Given:
[tex]\cos x=\frac{7}{25}[/tex]we know that:
[tex]\cos x=\frac{adjacent}{\text{hypotenuse}}[/tex]So, the adjacent side to x = 7 and the hypotenuse = 25
We can calculate the opposite side by the Pythagorean theorem
So, the opposite side will be:
[tex]\sqrt[]{25^2-7^2}=\sqrt[]{625-49}=\sqrt[]{576}=24[/tex]So, tan x will be:
[tex]\begin{gathered} \tan x=\frac{opposite}{adjacent} \\ \\ \tan x=\frac{24}{7} \end{gathered}[/tex]Another solution:
We know that:
[tex]\begin{gathered} \cos x=\frac{1}{\sec x}=\frac{7}{25} \\ \\ \sec x=\frac{25}{7} \end{gathered}[/tex]using the Pythagorean trig identity
[tex]\begin{gathered} \tan ^2x+1=\sec ^2x \\ \tan ^2x=\sec ^2x-1=(\frac{25}{7})^2-1=\frac{625}{49}-1 \\ \\ \tan ^2x=\frac{576}{49} \\ \\ \tan x=\sqrt[]{\frac{576}{49}}=\frac{24}{7} \end{gathered}[/tex]So, the answer will be:
[tex]\tan x=\frac{24}{7}[/tex]