Respuesta :

Given:

[tex]\cos x=\frac{7}{25}[/tex]

we know that:

[tex]\cos x=\frac{adjacent}{\text{hypotenuse}}[/tex]

So, the adjacent side to x = 7 and the hypotenuse = 25

We can calculate the opposite side by the Pythagorean theorem

So, the opposite side will be:

[tex]\sqrt[]{25^2-7^2}=\sqrt[]{625-49}=\sqrt[]{576}=24[/tex]

So, tan x will be:

[tex]\begin{gathered} \tan x=\frac{opposite}{adjacent} \\ \\ \tan x=\frac{24}{7} \end{gathered}[/tex]

Another solution:

We know that:

[tex]\begin{gathered} \cos x=\frac{1}{\sec x}=\frac{7}{25} \\ \\ \sec x=\frac{25}{7} \end{gathered}[/tex]

using the Pythagorean trig identity

[tex]\begin{gathered} \tan ^2x+1=\sec ^2x \\ \tan ^2x=\sec ^2x-1=(\frac{25}{7})^2-1=\frac{625}{49}-1 \\ \\ \tan ^2x=\frac{576}{49} \\ \\ \tan x=\sqrt[]{\frac{576}{49}}=\frac{24}{7} \end{gathered}[/tex]

So, the answer will be:

[tex]\tan x=\frac{24}{7}[/tex]

RELAXING NOICE
Relax