Respuesta :

Answer:

54

Step-by-step explanation:

using the rule of radicals

[tex]\sqrt{ab}[/tex] = [tex]\sqrt{a}[/tex] × [tex]\sqrt{b}[/tex] and [tex]\sqrt{a}[/tex] × [tex]\sqrt{a}[/tex] = a , then

[tex]\sqrt{6}[/tex] × 3[tex]\sqrt{54}[/tex]

= [tex]\sqrt{6}[/tex] × 3 × [tex]\sqrt{9(6)}[/tex]

= [tex]\sqrt{6}[/tex] × 3 × [tex]\sqrt{9}[/tex] × [tex]\sqrt{6}[/tex]

= [tex]\sqrt{6}[/tex] × [tex]\sqrt{6}[/tex] × 3 × 3

= 6 × 9

= 54

[tex]{ \qquad\qquad\huge\underline{\boxed{\sf Answer}}} [/tex]

Here's the solution ~

[tex]\qquad \sf  \dashrightarrow \: \sqrt{6} \times 3 \sqrt{54} [/tex]

[tex]\qquad \sf  \dashrightarrow \: \sqrt{2 \times 3} \times \sqrt{2 \times {3}^{3} } [/tex]

[tex]\qquad \sf  \dashrightarrow \: \sqrt{ {2}^{2} \times {3}^{4} } [/tex]

[tex]\qquad \sf  \dashrightarrow \:2 \times {3}^{2} [/tex]

[tex]\qquad \sf  \dashrightarrow \:2 \times 9[/tex]

[tex]\qquad \sf  \dashrightarrow \:18[/tex]

ACCESS MORE