Answer:
Step-by-step explanation:
Given that:
[tex]\mathbf{H_o : \sigma = 140} \\ \\\mathbf{H_i : \sigma > 140} \\ \\ \mathbf{ \alpha = 0.05 \ \ \ \ n = 25 \ \ \ \ S = 150}[/tex]
1. This type of test is right tailed since the alternative hypothesis is right tailed
2. The Observed test statistic is calculated as follows:
[tex]X^2 = \dfrac{(n-1)s^2}{\sigma^2} \\ \\ X^2 = \dfrac{(25-1)150^2}{140^2} \\ \\ X^2 = \dfrac{(24)22500}{19,600} \\ \\ X^2 =27.55[/tex]
3. Critical Value
where ∝ = 0.05 and the test statistic is right tailed ;
By using [tex]X^2[/tex] table
[tex]X^2 _{\alpha/2 , n-1}= 36.415[/tex]
4. Conclusion:
∝ = 0.05
where
X² = 36.415
Therefore ; we reject [tex]\mathbf{H_o}[/tex]