Respuesta :
Answer:
[tex]|\text{3x+12}| = \begin{cases}3\text{x}+12 \ \ \ \ \ \text{ if } \text{x} \ge -4\\-3\text{x}-12\ \ \ \ \text{if } \text{x} < -4\end{cases}[/tex]
=======================================================
Explanation:
If y = |x|, then either y = x or y = -x depending on the value of x.
- If x = 0 or larger, then we go for y = x
- If x < 0, then we'll go for y = -x
We can write this as a piecewise function like this
[tex]y = |\text{x}| = \begin{cases}\text{x} \ \text{if } \text{ x } \ge 0\\-\text{x} \ \text{if } \text{ x } < 0\end{cases}[/tex]
or like this
[tex]|\text{x}| = \begin{cases}\text{x} \ \text{if } \text{ x } \ge 0\\-\text{x} \ \text{if } \text{ x } < 0\end{cases}[/tex]
We only involve one curly brace.
-----------
Let's replace each copy of x with (3x+12)
So that previous piecewise function updates to
[tex]|\text{3x+12}| = \begin{cases}3\text{x}+12 \ \ \ \ \ \text{ if } 3\text{x}+12 \ge 0\\-(3\text{x}+12) \ \ \text{if } 3\text{x}+12 < 0\end{cases}[/tex]
The -(3x+12) portion distributes to -3x-12
Solving the inequality [tex]3\text{x}+12 \ge 0[/tex] leads to [tex]\text{x} \ge -4[/tex]
Solving the other inequality [tex]3\text{x}+12 < 0[/tex] leads to [tex]\text{x} < -4[/tex]
For each inequality, the inequality sign doesn't flip. This is because we haven't multiplied or divided both sides by a negative number.
-----------
Therefore, the piecewise function
[tex]|\text{3x+12}| = \begin{cases}3\text{x}+12 \ \ \ \ \ \text{ if } 3\text{x}+12 \ge 0\\-(3\text{x}+12) \ \ \text{if } 3\text{x}+12 < 0\end{cases}[/tex]
is equivalent to
[tex]|\text{3x+12}| = \begin{cases}3\text{x}+12 \ \ \ \ \ \text{ if } \text{x} \ge -4\\-3\text{x}-12\ \ \ \ \text{if } \text{x} < -4\end{cases}[/tex]
which is the final answer.
-----------
You can graph y = |3x+12| to confirm.
Desmos is a useful tool for this sort of thing. Add the linear graphs of y = 3x+12 and y = -3x-12; notice how they overlap over the V shape. This confirms that pieces of these lines form the V shape.