Respuesta :

The answer is [tex]\boxed {\frac{dy}{dx} = \frac{y^{x}logy-yx^{y-1}}{x^{y}logx-xy^{x-1}}}[/tex].

Apply logarithmic differentiation on each side.

LHS

  • u = x^y
  • log u = y log x
  • 1/u du/dx = y/x + log x (dy/dx)
  • du/dx = x^y (y/x + log x dy/dx)
  • du/dx = yx^(y - 1) + x^y logx dy/dx

RHS

  • v = y^x
  • log v = x log y
  • 1/v dv/dx = x/y dy/dx + logy
  • dv/dx = y^x (x/y dy/dx + logy)
  • dv/dx = xy^(x - 1) dy/dx + y^x logy

Equating both sides

  • yx^(y - 1) + x^y logx dy/dx = xy^(x - 1) dy/dx + y^x logy
  • dy/dx (x^y logx - xy^(x - 1)) = y^x logy - yx^(y - 1)
  • [tex]\boxed {\frac{dy}{dx} = \frac{y^{x}logy-yx^{y-1}}{x^{y}logx-xy^{x-1}}}[/tex]
ACCESS MORE
EDU ACCESS
Universidad de Mexico