The answer is [tex]\boxed {\frac{dy}{dx} = \frac{y^{x}logy-yx^{y-1}}{x^{y}logx-xy^{x-1}}}[/tex].
Apply logarithmic differentiation on each side.
LHS
- u = x^y
- log u = y log x
- 1/u du/dx = y/x + log x (dy/dx)
- du/dx = x^y (y/x + log x dy/dx)
- du/dx = yx^(y - 1) + x^y logx dy/dx
RHS
- v = y^x
- log v = x log y
- 1/v dv/dx = x/y dy/dx + logy
- dv/dx = y^x (x/y dy/dx + logy)
- dv/dx = xy^(x - 1) dy/dx + y^x logy
Equating both sides
- yx^(y - 1) + x^y logx dy/dx = xy^(x - 1) dy/dx + y^x logy
- dy/dx (x^y logx - xy^(x - 1)) = y^x logy - yx^(y - 1)
- [tex]\boxed {\frac{dy}{dx} = \frac{y^{x}logy-yx^{y-1}}{x^{y}logx-xy^{x-1}}}[/tex]