Determine if the series converges or diverges. If the series converges, find its sum.
9
Σ n(n+3)
n=1


OA. The series diverges.
OB. The series converges to
11
2
7
OC. The series converges to
2
D. The series converges
15
-
2

Determine if the series converges or diverges If the series converges find its sum 9 Σ nn3 n1 OA The series diverges OB The series converges to 11 2 7 OC The se class=

Respuesta :

The true statement about the series [tex]\sum\limits^{\infty}_{n=1} \frac{9}{n(n +3)}[/tex] is that (a) the series diverges

How to determine if the series diverges or converges?

The series is given as:

[tex]\sum\limits^{\infty}_{n=1} \frac{9}{n(n +3)}[/tex]

Take the limit of the function to infinity

[tex]\lim_{n \to \infty} \frac{9}{n(n +3)}[/tex]

This gives

[tex]\lim_{n \to \infty} \frac{9}{n(n +3)} = \frac{9}{\infty * (\infty +3)}[/tex]

Evaluate the sum

[tex]\lim_{n \to \infty} \frac{9}{n(n +3)} = \frac{9}{\infty * \infty}[/tex]

Evaluate the product

[tex]\lim_{n \to \infty} \frac{9}{n(n +3)} = \frac{9}{\infty}[/tex]

Evaluate the quotient

[tex]\lim_{n \to \infty} \frac{9}{n(n +3)} = 0[/tex]

Since the limit is 0, then it means that the series diverges

Hence, the true statement about the series [tex]\sum\limits^{\infty}_{n=1} \frac{9}{n(n +3)}[/tex] is that (a) the series diverges

Read more about series at:

https://brainly.com/question/337693

#SPJ1

Answer:

B. The series converges to [tex]\displaystyle{\frac{11}{2}}[/tex].

Step-by-step explanation:

Before evaluating the infinite series, the expression can be decomposed as the sum of two fractions (partial fraction decomposition) as follows.

Let [tex]\textit{A}[/tex] and [tex]\textit{B}[/tex] be constants such that

                                       [tex]{\displaystyle{\frac{9}{n\left(n+3\right)}}}} \ \ = \ \ \displaystyle{\frac{A}{n} \ \ \ + \ \ \frac{B}{n+3}}[/tex]

Multiply both sides of the equation by the denominator of the left fraction,

[tex]n\left(n+3\right)[/tex], yielding

                                              [tex]9 \ \ = \ \ A\left(n+3\right) \ \ + \ \ B \-\hspace{0.045cm} n[/tex]

Now, let [tex]n \ = \ 0[/tex], thus

                                             [tex]\-\hspace{0.2cm} 9 \ \ = \ \ A\left(0 + 3\right) \ + \ B\left(0\right) \\ \\ 3 \-\hspace{0.035cm} A \ = \ \ 9 \\ \\ \-\hspace{0.11cm} A \ \ = \ \ 3[/tex].

Likewise, let [tex]n \ = \ -3[/tex], then

                                            [tex]\-\hspace{0.5cm} 9 \ \ = \ \ A\left(-3 + 3\right) \ + \ B\left(-3\right) \\ \\ -3 \-\hspace{0.035cm} B \ = \ \ 9 \\ \\ \-\hspace{0.44cm} B \ \ = \ \ -3[/tex]

Hence,

                                       [tex]\displaystyle{\sum_{n=1}^{\infty} {\frac{9}{n\left(n+3\right)}}} \ = \ \displaystyle\sum_{n=1}^{\infty} \left(\frac{3}{n} \ - \ \frac{3}{n+3}\right)[/tex].

First and foremost, write the nth partial sum (first nth terms) of the series,

          [tex]\displaystyle\sum_{n=1}^{n} \left(\frac{3}{n} \ - \ \frac{3}{n+3}\right) \ \ = \ \-\hspace{0.33cm} \displaytstyle{\frac{3}{1} \ - \frac{3}{4} + \ \frac{3}{2} \ - \frac{3}{5} \ + \frac{3}{3} \ - \frac{3}{6} \ + \frac{3}{4} \ - \frac{3}{7}} \\ \\ \\ \-\hspace{3.58cm} + \ \displaystyle{\frac{3}{5} \ - \ \frac{3}{8} \ + \ \frac{3}{6} \ - \ \frac{3}{9} \ + \ \frac{3}{7} \ - \ \frac{3}{10}} \\ \\ \\ \-\hspace{3.58cm} + \ \ \dots[/tex]

                                                [tex]+ \ \ \displaystyle{\frac{3}{n-3} \ - \ \frac{3}{n} \ + \ \frac{3}{n-2} \ - \ \frac{3}{n+1}} \\ \\ \\ \ + \ \frac{3}{n-1} \ - \ \frac{3}{n+2} \ + \ \frac{3}{n} - \ \frac{3}{n+3}}[/tex].

Notice that the expression forms a telescoping sum where subsequent terms cancel each other, leaving only

        [tex]\displaystyle\sum_{n=1}^{n} \left(\frac{3}{n} \ - \ \frac{3}{n+3}\right) \ \ = \ \-\hspace{0.33cm} \displaytstyle{\frac{3}{1} \ + \ \frac{3}{2} \ + \frac{3}{3} \ - \ \frac{3}{n+1}} - \ \frac{3}{n+2} \ - \ \frac{3}{n+3}}}[/tex].

To determine if this infinite series converges or diverges, evaluate the limit of the nth partial sum as [tex]n \ \rightarrow \ \infty[/tex],

         [tex]\displaystyle\sum_{n=1}^{\infty} \left(\frac{3}{n} \ - \ \frac{3}{n+3}\right) \ \ = \ \-\hspace{0.33cm} \lim_{n \to \infty} \left(\displaytstyle{\frac{11}{2} \ - \ \frac{3}{n+1} \ - \ \frac{3}{n+2} \ + \ - \ \frac{3}{n+3}\right) \\ \\ \\ \-\hspace{3.25cm} = \ \ \ \displaystyle{\frac{11}{2} \ - \ 0 \ - \ 0 \ - \ 0} \\ \\ \\ \-\hspace{3.25cm} = \ \ \ \displaystyle{\frac{11}{2}[/tex]

ACCESS MORE
EDU ACCESS