Answer:
B. The series converges to [tex]\displaystyle{\frac{11}{2}}[/tex].
Step-by-step explanation:
Before evaluating the infinite series, the expression can be decomposed as the sum of two fractions (partial fraction decomposition) as follows.
Let [tex]\textit{A}[/tex] and [tex]\textit{B}[/tex] be constants such that
[tex]{\displaystyle{\frac{9}{n\left(n+3\right)}}}} \ \ = \ \ \displaystyle{\frac{A}{n} \ \ \ + \ \ \frac{B}{n+3}}[/tex]
Multiply both sides of the equation by the denominator of the left fraction,
[tex]n\left(n+3\right)[/tex], yielding
[tex]9 \ \ = \ \ A\left(n+3\right) \ \ + \ \ B \-\hspace{0.045cm} n[/tex]
Now, let [tex]n \ = \ 0[/tex], thus
[tex]\-\hspace{0.2cm} 9 \ \ = \ \ A\left(0 + 3\right) \ + \ B\left(0\right) \\ \\ 3 \-\hspace{0.035cm} A \ = \ \ 9 \\ \\ \-\hspace{0.11cm} A \ \ = \ \ 3[/tex].
Likewise, let [tex]n \ = \ -3[/tex], then
[tex]\-\hspace{0.5cm} 9 \ \ = \ \ A\left(-3 + 3\right) \ + \ B\left(-3\right) \\ \\ -3 \-\hspace{0.035cm} B \ = \ \ 9 \\ \\ \-\hspace{0.44cm} B \ \ = \ \ -3[/tex]
Hence,
[tex]\displaystyle{\sum_{n=1}^{\infty} {\frac{9}{n\left(n+3\right)}}} \ = \ \displaystyle\sum_{n=1}^{\infty} \left(\frac{3}{n} \ - \ \frac{3}{n+3}\right)[/tex].
First and foremost, write the nth partial sum (first nth terms) of the series,
[tex]\displaystyle\sum_{n=1}^{n} \left(\frac{3}{n} \ - \ \frac{3}{n+3}\right) \ \ = \ \-\hspace{0.33cm} \displaytstyle{\frac{3}{1} \ - \frac{3}{4} + \ \frac{3}{2} \ - \frac{3}{5} \ + \frac{3}{3} \ - \frac{3}{6} \ + \frac{3}{4} \ - \frac{3}{7}} \\ \\ \\ \-\hspace{3.58cm} + \ \displaystyle{\frac{3}{5} \ - \ \frac{3}{8} \ + \ \frac{3}{6} \ - \ \frac{3}{9} \ + \ \frac{3}{7} \ - \ \frac{3}{10}} \\ \\ \\ \-\hspace{3.58cm} + \ \ \dots[/tex]
[tex]+ \ \ \displaystyle{\frac{3}{n-3} \ - \ \frac{3}{n} \ + \ \frac{3}{n-2} \ - \ \frac{3}{n+1}} \\ \\ \\ \ + \ \frac{3}{n-1} \ - \ \frac{3}{n+2} \ + \ \frac{3}{n} - \ \frac{3}{n+3}}[/tex].
Notice that the expression forms a telescoping sum where subsequent terms cancel each other, leaving only
[tex]\displaystyle\sum_{n=1}^{n} \left(\frac{3}{n} \ - \ \frac{3}{n+3}\right) \ \ = \ \-\hspace{0.33cm} \displaytstyle{\frac{3}{1} \ + \ \frac{3}{2} \ + \frac{3}{3} \ - \ \frac{3}{n+1}} - \ \frac{3}{n+2} \ - \ \frac{3}{n+3}}}[/tex].
To determine if this infinite series converges or diverges, evaluate the limit of the nth partial sum as [tex]n \ \rightarrow \ \infty[/tex],
[tex]\displaystyle\sum_{n=1}^{\infty} \left(\frac{3}{n} \ - \ \frac{3}{n+3}\right) \ \ = \ \-\hspace{0.33cm} \lim_{n \to \infty} \left(\displaytstyle{\frac{11}{2} \ - \ \frac{3}{n+1} \ - \ \frac{3}{n+2} \ + \ - \ \frac{3}{n+3}\right) \\ \\ \\ \-\hspace{3.25cm} = \ \ \ \displaystyle{\frac{11}{2} \ - \ 0 \ - \ 0 \ - \ 0} \\ \\ \\ \-\hspace{3.25cm} = \ \ \ \displaystyle{\frac{11}{2}[/tex]