Respuesta :
BaSO₄(s) ⇄ Ba²⁺(aq) + SO₄²⁻(aq)
Ksp=[Ba²⁺][SO₄²⁻]
[Ba²⁺]=[SO₄²⁻]
Ksp=[Ba²⁺]²
Ksp=(1.76*10⁻³)² =3.0976×10⁻⁶ ≈3.1×10⁻⁶
Ksp=[Ba²⁺][SO₄²⁻]
[Ba²⁺]=[SO₄²⁻]
Ksp=[Ba²⁺]²
Ksp=(1.76*10⁻³)² =3.0976×10⁻⁶ ≈3.1×10⁻⁶
Answer:
The value of solubility product of barium sulfate is [tex] 3.09\times 10^{-6}[/tex].
Explanation:
[tex]BaSO_4\rightarrow Ba^{2+}+SO_4^{2-}[/tex]
S S
1 mole of barium sulfate dissociates into 1 mole of barium ion and one mole sulfate ion.
So, [tex][Ba^{2+}]=[SO_4^{2-}]=S[/tex]
[tex][Ba^{2+}]=S=1.76\times 10^{-3} M[/tex]
The solubility product the barium sulfate will be given by:
[tex]K_{sp}=S\times S=S^2[/tex]
[tex]K_{sp}= (1.76\times 10^{-3})^2=3.09\times 10^{-6}[/tex]
The value of solubility product of barium sulfate is [tex] 3.09\times 10^{-6}[/tex].