contestada

Find the coordinates of the circumcenter of DEF.

11. D (6,0), E (0,6), F (-6,0)
12. D (0,0) E (6,0), F (0,4)

Respuesta :

Lanuel
  1. The coordinates of the circumcenter of triangle DEF with the given vertices are (0, 0).
  2. The coordinates of the circumcenter of triangle DEF with the given vertices are (-1/3, 3).

How to determine the coordinates?

In order to determine the coordinates of the circumcenter of triangle DEF with the given vertices, let its circumcenter be P(x, y). Hence, PD = PE = PF.

By squaring all sides of triangle DEF, we have:

PD² = PE² = PF²

From PD² = PE², we have:

(x - 6)² + (y - 0)² = (x - 0)² + (y - 6)²

x² - 12x + 36 + y² = x² + y² - 12y + 36

-12x + 12y = 0    ..........equation 1.

From PE² = PF², we have:

(x - 0)² + (y - 6)² = (x - (-6))² + (y - 0)²

x² + y² - 12y + 36 = (x + 6)² + y²

x² + y² - 12y + 36 = x² + 12x + 36 + y²

-12x - 12y = 0     ..........equation 2.

Solving eqn. 1 and eqn. 2 simultaneously, we have:

x = 0 and y = 0.

Therefore, the coordinates of the circumcenter of triangle DEF with the given vertices are (0, 0).

At D (0,0) E (6,0), F (0,4).

From PD² = PE², we have:

(x - 0)² + (y - 0)² = (x - 6)² + (y - 0)²

x² + y² = x² - 12y + 36 + y²

12y = 36    

y = 3.

From PE² = PF², we have:

(x - 6)² + (y - 0)² = (x - 0)² + (y - 4)²

x² - 12x + 36 + y² = x² + y² - 8y + 16

-12x - 8y = -20    

-12x - 8(3) = -20

-12x - 24 = -20

12x = -4

x = -1/3.

Therefore, the coordinates of the circumcenter of triangle DEF with the given vertices are (-1/3, 3).

Read more on circumcenter here: https://brainly.com/question/28027775

#SPJ1

ACCESS MORE