Answer:
C. y = x2 + 8x + 12
Step-by-step explanation:
To find x intercept/zero, substitute y = 0
0 = x^2 + 8x + 12
x^2 += 8x + 12 = 0
x^2 + 8x + 12 = 0
Solve the quadratic equation
- ax^2 + bx + c = 0 using x = -b±[tex]\sqrt{b^2 -4ac[/tex] / 2a
- x = -8±[tex]\sqrt{8^2 -4(1)(12)[/tex] / 2(1)
x = -8±[tex]\sqrt{8^2 -4(12)[/tex] / 2(1)
any expression multiplied by 1 remains the same
x= -8±[tex]\sqrt{8^2 - 4(12)[/tex] / 2(1)
Evaluate the power
8^2
write the exponentiation as a multiplication
8(8)
multiply the numbers
64
x = -8±[tex]\sqrt{64 - 4(12)[/tex] / 2(1)
multiply the numbers
x = -8±[tex]\sqrt{64 - 48[/tex] / 2(1)
any expression multiplied by q remains the same
x = -8±[tex]\sqrt{64-48[/tex] /2
subtract the numbers
x = -8±[tex]\sqrt{16[/tex] / 2
calculate the square root
x= -8± 4 / 2
x= -8 + 4 / 2
x= -8 - 4 / 2
simplify the expression
x = -2
x = -8 - 4 / 2
x = -2
x = -6
final solutions are
x1 = -6, x 2 = -2