contestada

Which function describes this graph?

10
А. y = (х – 4 )(х - 4)
В. у = х2 - 2x +6
оооо
ос. у = х2 + 8х +12
D. у = (х-2)(х – 6).

Which function describes this graph 10 А y х 4 х 4 В у х2 2x 6 оооо ос у х2 8х 12 D у х2х 6 class=

Respuesta :

Answer:

C. y = x2 + 8x + 12

Step-by-step explanation:

To find x intercept/zero, substitute y = 0

0 = x^2 + 8x + 12

x^2 += 8x + 12 = 0

x^2 + 8x + 12 = 0

Solve the quadratic equation

  • ax^2 + bx + c = 0 using x = -b±[tex]\sqrt{b^2 -4ac[/tex] / 2a
  • x = -8±[tex]\sqrt{8^2 -4(1)(12)[/tex] / 2(1)

x = -8±[tex]\sqrt{8^2 -4(12)[/tex] / 2(1)

any expression multiplied by 1 remains the same

x= -8±[tex]\sqrt{8^2 - 4(12)[/tex] / 2(1)

Evaluate the power

8^2

write the exponentiation as a multiplication

8(8)

multiply the numbers

64

x = -8±[tex]\sqrt{64 - 4(12)[/tex] / 2(1)

multiply the numbers

x = -8±[tex]\sqrt{64 - 48[/tex] / 2(1)

any expression multiplied by q remains the same

x = -8±[tex]\sqrt{64-48[/tex] /2

subtract the numbers

x = -8±[tex]\sqrt{16[/tex] / 2

calculate the square root

x= -8± 4 / 2

x= -8 + 4 / 2

x= -8 - 4 / 2

simplify the expression

x = -2

x = -8 - 4 / 2

x = -2

x = -6

final solutions are

x1 = -6, x 2 = -2

ACCESS MORE