Complete the recursive formula of the geometric sequence -0.25\,,-2\,,-16\,,-128,...−0.25,−2,−16,−128,...minus, 0, point, 25, comma, minus, 2, comma, minus, 16, comma, minus, 128, comma, point, point, point.
b(1)=b(1)=b, left parenthesis, 1, right parenthesis, equals
b(n)=b(n-1)\cdotb(n)=b(n−1)⋅b, left parenthesis, n, right parenthesis, equals, b, left parenthesis, n, minus, 1, right parenthesis, dot

Respuesta :

The recursive formula of the geometric sequence is [tex]b(1) = -0.25[/tex], [tex]b(n) = b(n-1)\cdot 8[/tex]

How to determine the recursive formula?

The sequence is given as:

[tex]-0.25\,,-2\,,-16\,,-128,..[/tex]

The first term of the above sequence is

[tex]b(1) = -0.25[/tex]

Calculate the common ratio using

r = b(2)/b(1)

So, we have:

r = -2/-0.25

Evaluate

r = 8

So, we have:

[tex]b(n) = b(n-1)\cdot 8[/tex]

Hence, the recursive formula of the geometric sequence is [tex]b(1) = -0.25[/tex], [tex]b(n) = b(n-1)\cdot 8[/tex]

Read more about geometric sequence at:

https://brainly.com/question/1509142

#SPJ1

Complete question

Complete the recursive formula of the geometric sequence

[tex]-0.25\,,-2\,,-16\,,-128,..[/tex]

[tex]b(1) =[/tex]

[tex]b(n) = b(n-1)\cdot[/tex]

ACCESS MORE