The recursive formula of the geometric sequence is [tex]b(1) = -0.25[/tex], [tex]b(n) = b(n-1)\cdot 8[/tex]
The sequence is given as:
[tex]-0.25\,,-2\,,-16\,,-128,..[/tex]
The first term of the above sequence is
[tex]b(1) = -0.25[/tex]
Calculate the common ratio using
r = b(2)/b(1)
So, we have:
r = -2/-0.25
Evaluate
r = 8
So, we have:
[tex]b(n) = b(n-1)\cdot 8[/tex]
Hence, the recursive formula of the geometric sequence is [tex]b(1) = -0.25[/tex], [tex]b(n) = b(n-1)\cdot 8[/tex]
Read more about geometric sequence at:
https://brainly.com/question/1509142
#SPJ1
Complete question
Complete the recursive formula of the geometric sequence
[tex]-0.25\,,-2\,,-16\,,-128,..[/tex]
[tex]b(1) =[/tex]
[tex]b(n) = b(n-1)\cdot[/tex]