The boom makes an angle of θ = 60.2° with the vertical wall and the tension in the horizontal rope is mathematically given as
[tex]T_1=730.85 \mathrm{~N}[/tex]
[tex]T_1'=\frac{1980.51 \mathrm{~N}}{}[/tex]
What is the tension in the vertical rope.?
Generally, the equation for is mathematically given as
1) Tension in vertical rope,
[tex]T_{1}=74.5 \times 9.81\\T_1=730.85 \mathrm{~N}[/tex]
2) Tension in horizontal rope,
[tex]\sum{Mg} =0\\Mg\frac{l}{2} \sin \theta+T_{1} \frac{l}{2} \sin \theta &=T_{2} l \cos \theta \\[/tex]
[tex]T_{2} &=\frac{M g(l / 2) \sin \theta+T_{1}(l / 2) \sin \theta}{l \cos \theta} \\\\&=\frac{M g \tan \theta}{2}+\frac{T_{1} \tan \theta}{2} \\\\T_{2} &=\frac{142 \times 9.81 \tan 61.8}{2}+\frac{730.85 \times \tan 61.8}{2} \\\\=& 1299+681.51[/tex]
[tex]T_1=\frac{1980.51 \mathrm{~N}}{}[/tex]
In conclusion, the tension in the horizontal rope is
[tex]T_1=\frac{1980.51 \mathrm{~N}}{}[/tex]
Read more about tension
https://brainly.com/question/6359509
#SPJ1