Let x be a multiple of 7
Three consecutive multiples of 7 are
[tex] \\ \large\blue\longrightarrow\rm \large \:x \: + \: (x \: + \: 7) + (x \: + \: 14) \: = \: 693[/tex]
[tex] \large\blue\longrightarrow \rm \large \:3x \: + \: 21 \: = \: 693[/tex]
[tex] \large\blue\longrightarrow \rm \large \:3x \: = \: 693 \: - \: 21[/tex]
[tex] \large\blue\longrightarrow \rm \large \:3x \: = \: 672[/tex]
Dividing both sides by 3 , we have
[tex]\large\blue\longrightarrow \rm \large \: \frac{3x}{3} \: = \: \frac{672}{3} \\ [/tex]
[tex]\large\blue\longrightarrow \rm \large \: \ \: \frac{ \cancel3x}{ \cancel3} \: = \: \frac{ \cancel{672} \: \: ^{ \red{224}} }{ \cancel3} \\ [/tex]
[tex]\large\blue\longrightarrow \rm \large \:x \: = \: 224 \\[/tex]
Three consecutive multiples of 7 are