Respuesta :

Let x be a multiple of 7

  • The next two consecutive multiples of 7 are x + 7 and x + 7 + 7 (i.e. x + 14)

Three consecutive multiples of 7 are

  • x
  • x + 7
  • x + 14

According to the condition

[tex] \\ \large\blue\longrightarrow\rm \large \:x \: + \: (x \: + \: 7) + (x \: + \: 14) \: = \: 693[/tex]

[tex] \large\blue\longrightarrow \rm \large \:3x \: + \: 21 \: = \: 693[/tex]

[tex] \large\blue\longrightarrow \rm \large \:3x \: = \: 693 \: - \: 21[/tex]

[tex] \large\blue\longrightarrow \rm \large \:3x \: = \: 672[/tex]

Dividing both sides by 3 , we have

[tex]\large\blue\longrightarrow \rm \large \: \frac{3x}{3} \: = \: \frac{672}{3} \\ [/tex]

[tex]\large\blue\longrightarrow \rm \large \: \ \: \frac{ \cancel3x}{ \cancel3} \: = \: \frac{ \cancel{672} \: \: ^{ \red{224}} }{ \cancel3} \\ [/tex]

[tex]\large\blue\longrightarrow \rm \large \:x \: = \: 224 \\[/tex]

  • x = 224
  • x + 7 = 224 + 7 = 231
  • x + 14 = 224 + 14 = 238

Three consecutive multiples of 7 are

  • 224
  • 231
  • 238