Answer : The height of the unit cell is, [tex]4.947\AA[/tex]
Explanation : Given,
Density of zinc = [tex]7.14g/cm^3[/tex]
Atomic radius = [tex]1.332\AA[/tex]
Atomic weight of zinc = 65.37 g/mole
As we know that, zinc has haxagonal close packed crystal structure. The number of atoms in unit cell of HCP is, 6.
Formula used for density :
[tex]\rho=\frac{Z\times M}{N_{A}\times a^{3}}[/tex] .............(1)
where,
[tex]\rho[/tex] = density of zinc
Z = number of atom in unit cell = 6 atoms/unit cell (for HCP)
M = atomic mass
[tex](N_{A})[/tex] = Avogadro's number = [tex]6.022\times 10^{23}atoms/mole[/tex]
a = edge length of unit cell
[tex]a^3[/tex] = volume of unit cell
Now put all the values in above formula (1), we get
[tex]7.14g/cm^3=\frac{(6\text{ atoms per unit cell})\times (65.37g/mole)}{(6.022\times 10^{23}atoms/mole)\times a^{3}}[/tex]
[tex]V=a^{3}=9.122\times 10^{-23}cm^3[/tex]
[tex]V=9.122\times 10^{-29}m^3[/tex]
Now we have to calculate the height of the unit cell.
Formula used :
[tex]V=6\sqrt {3}r^2h[/tex]
where,
V = volume of unit cell
r = atomic radius = [tex]1.332\AA=1.332\times 10^{-10}m[/tex]
conversion used : [tex](1\AA=10^{-10}m)[/tex]
h = height of the unit cell
Now put all the given values in this formula, we get:
[tex]9.122\times 10^{-29}m^3=6\sqrt {3}\times (1.332\times 10^{-10}m)^2h[/tex]
[tex]h=4.947\times 10^{-10}m=4.947\AA[/tex]
Therefore, the height of the unit cell is, [tex]4.947\AA[/tex]