the density of zinc is 7.14 g/cm^3 and has an atomic radius of 1.332A. Calculate the height of its unit cell. the atomic weight is 65.37 grams/mole.

Respuesta :

Answer : The height of the unit cell is, [tex]4.947\AA[/tex]

Explanation : Given,

Density of zinc = [tex]7.14g/cm^3[/tex]

Atomic radius = [tex]1.332\AA[/tex]

Atomic weight of zinc = 65.37 g/mole

As we know that, zinc has haxagonal close packed crystal structure. The number of atoms in unit cell of HCP is, 6.

Formula used for density :

[tex]\rho=\frac{Z\times M}{N_{A}\times a^{3}}[/tex]      .............(1)

where,

[tex]\rho[/tex] = density  of zinc

Z = number of atom in unit cell  = 6 atoms/unit cell (for HCP)

M = atomic mass

[tex](N_{A})[/tex] = Avogadro's number  = [tex]6.022\times 10^{23}atoms/mole[/tex]

a = edge length of unit cell

[tex]a^3[/tex] = volume of unit cell

Now put all the values in above formula (1), we get

[tex]7.14g/cm^3=\frac{(6\text{ atoms per unit cell})\times (65.37g/mole)}{(6.022\times 10^{23}atoms/mole)\times a^{3}}[/tex]

[tex]V=a^{3}=9.122\times 10^{-23}cm^3[/tex]

[tex]V=9.122\times 10^{-29}m^3[/tex]

Now we have to calculate the height of the unit cell.

Formula used :

[tex]V=6\sqrt {3}r^2h[/tex]

where,

V = volume of unit cell

r = atomic radius = [tex]1.332\AA=1.332\times 10^{-10}m[/tex]

conversion used : [tex](1\AA=10^{-10}m)[/tex]

h = height of the unit cell

Now put all the given values in this formula, we get:

[tex]9.122\times 10^{-29}m^3=6\sqrt {3}\times (1.332\times 10^{-10}m)^2h[/tex]

[tex]h=4.947\times 10^{-10}m=4.947\AA[/tex]

Therefore, the height of the unit cell is, [tex]4.947\AA[/tex]