Respuesta :

Step-by-step explanation:

Use the difference quotient

[tex] \frac{f(x + h) - f(x)}{h} [/tex]

Here it will become

[tex] \frac{2 (0.85) {}^{x + h} - 2(0.85 {}^{x}) }{h} [/tex]

For the first box, let x=-4, and h= 0.001

[tex] \frac{2(0.85) {}^{ - 4 + 0.001} - 2(0.85) {}^{ - 4} }{0.001} [/tex]

Using a calculator, you will get about

[tex] - 0.622[/tex]

Next, let do this for 0.5

[tex] \frac{2(0.85) {}^{0.5 + 0.001} - 2(0.85) {}^{0.5} }{0.001} [/tex]

You will get about

[tex] - 0.3[/tex]

Finally, do this for

1.25

[tex] \frac{2(0.85) {}^{1.25 + 0.001} - 2(0.85) {}^{1.25} }{0.001} [/tex]

You get about

[tex] - 0.265[/tex]

Note : This is the definition of a derivative