Step-by-step explanation:
Use the difference quotient
[tex] \frac{f(x + h) - f(x)}{h} [/tex]
Here it will become
[tex] \frac{2 (0.85) {}^{x + h} - 2(0.85 {}^{x}) }{h} [/tex]
For the first box, let x=-4, and h= 0.001
[tex] \frac{2(0.85) {}^{ - 4 + 0.001} - 2(0.85) {}^{ - 4} }{0.001} [/tex]
Using a calculator, you will get about
[tex] - 0.622[/tex]
Next, let do this for 0.5
[tex] \frac{2(0.85) {}^{0.5 + 0.001} - 2(0.85) {}^{0.5} }{0.001} [/tex]
You will get about
[tex] - 0.3[/tex]
Finally, do this for
1.25
[tex] \frac{2(0.85) {}^{1.25 + 0.001} - 2(0.85) {}^{1.25} }{0.001} [/tex]
You get about
[tex] - 0.265[/tex]
Note : This is the definition of a derivative