The measure of angle TAC is 61.6 degrees
The given parameters are:
[tex]\mathbf{AB = 7}[/tex]
[tex]\mathbf{BC = 9}[/tex]
Start by calculating length AC, using the following Pythagoras theorem.
[tex]\mathbf{AC = \sqrt{AB^2 + BC^2}}[/tex]
So, we have:
[tex]\mathbf{AC = \sqrt{7^2 + 9^2}}[/tex]
[tex]\mathbf{AC = \sqrt{49 + 81}}[/tex]
[tex]\mathbf{AC = \sqrt{130}}[/tex]
[tex]\mathbf{AC = 11.40}[/tex]
Next, we calculate side length AM
[tex]\mathbf{AM = \frac{AC}{2}}[/tex]
So, we have:
[tex]\mathbf{AM = \frac{11.40}{2}}[/tex]
[tex]\mathbf{AM = 5.70}[/tex]
The measure of angle TAC is calculated using the following cosine ratio
[tex]\mathbf{cos(A)= \frac{AM}{TA}}[/tex]
So, we have:
[tex]\mathbf{cos(A)= \frac{5.70}{12}}[/tex]
[tex]\mathbf{cos(A)= 0.475}[/tex]
Take arc cos of both sides
[tex]\mathbf{A= 61.6}[/tex]
Hence, the measure of angle TAC is 61.6 degrees
Read more about pyramids at:
https://brainly.com/question/15591430