Respuesta :
#a
#1st year
[tex]\\ \rm\Rrightarrow 12000+0.045(12000)=12540[/tex]
#2nd year
[tex]\\ \rm\Rrightarrow 12540+0.05(12540)=13167[/tex]
#3rd year
[tex]\\ \rm\Rrightarrow 13167+0.053(13167)=13864.85[/tex]
#4th year
[tex]\\ \rm\Rrightarrow 13864.85+13864.85(0.049)=14544.2[/tex]
#b
Total interest
[tex]\\ \rm\Rrightarrow 14544.2-12000=£ 2544.2[/tex]
#c
Percentage
[tex]\\ \rm\Rrightarrow \dfrac{2544.2}{12000}\times 100[/tex]
[tex]\\ \rm\Rrightarrow 21.2\%[/tex]
Answer:
(a) Year 1: £12,540
Year 2: £13,167
Year 3: £13,964.85
Year 4: £14,544.23
(b) £2,544.23
(c) 21.2% (1 d.p.)
Step-by-step explanation:
Simple interest formula
A = P(1 + rt)
where:
- A = final amount
- P = principal
- r = interest rate (in decimal form)
- t = time (in years)
Given:
- Principal = £12,000
- Interest rates for each progressive year = 4.5%, 5%, 5.3% and 4.9%
Part (a)
Year 1
⇒ A = 12000(1 + 0.045)
⇒ A = £12,540
Year 2
⇒ A = 12540(1 + 0.05)
⇒ A = £13,167
Year 3
⇒ A = 13167(1 + 0.053)
⇒ A = 13964.851
⇒ A = £13,964.85
Year 4
⇒ A = 13964.851(1 + 0.049)
⇒ A = 14544.2287
⇒ A = £14,544.23
Part (b)
[tex]\begin{aligned}\sf Total \: interest & = \sf final \: amount - principal \: amount\\& = \sf 14544.23 - 12000\\& = \sf \£2,544.23\end{aligned}[/tex]
Part (c)
[tex]\begin{aligned}\sf Percent & =\sf \left(\dfrac{Value}{Total\:value}\right) \times 100\\\\ \implies \textsf{Percent} & =\sf \dfrac{2544.23}{12000} \times 100\\\\ & = \sf 21.2\%\:\:(1\:d.p.) \end{aligned}[/tex]