Respuesta :

Answer:

[tex]\displaystyle \csc\theta=-\frac{\sqrt{5}}{2}[/tex]

Step-by-step explanation:

Since [tex]\displaystyle \csc\theta=\frac{1}{\sin\theta}=\frac{1}{\frac{\text{Opposite}}{\text{Hypotenuse}}}=\frac{\text{Hypotenuse}}{\text{Opposite}}[/tex], we need to find the hypotenuse given our corresponding opposite and adjacent lengths of -6 and -3 accounting for Quadrant III:

[tex](-6)^2+(-3)^2=c^2\\\\36+9=c^2\\\\45=c^2\\\\\sqrt{45}=c\\\\c=3\sqrt{5}[/tex]

Thus, [tex]\displaystyle \csc\theta=\frac{\text{Hypotenuse}}{\text{Opposite}}=\frac{3\sqrt{5}}{-6}=-\frac{\sqrt{5}}{2}[/tex]

Ver imagen goddessboi
ACCESS MORE