How much would you need to deposit in an account now in order to have $6000 in the account in 5 years? Assume the account earns 8% interest compounded daily.

Respuesta :

Answer:

$[tex]\frac{6000\cdot \:365^{1825}}{365.08^{1825}}[/tex]

Step-by-step explanation:

[tex]x(1+.\frac{.08}{365})^{5\cdot \:365} =6000[/tex]

[tex]x\frac{365.08^{1825}}{365^{1825}}=6000[/tex]

[tex]x\frac{365.08^{1825}}{365^{1825}}\cdot \:365^{1825}=6000\cdot \:365^{1825};\quad \ne \mathrm{True}[/tex]

[tex]365.08^{1825}x=6000\cdot \:365^{1825};\quad \ne \mathrm{True}[/tex]

[tex]\frac{365.08^{1825}x}{365.08^{1825}}=\frac{6000\cdot \:365^{1825}}{365.08^{1825}};\quad \ne \mathrm{True}[/tex]

[tex]x=\frac{6000\cdot \:365^{1825}}{365.08^{1825}};\quad \ne \mathrm{True}[/tex]

you cannot simplify further because of the high exponents

It is simply extremely hard to do compound interest problems backwards if it gets compounded daily

Mark brainliest please!

ACCESS MORE
EDU ACCESS