Respuesta :

Answer:

[tex]\tt 5 > 2+\cfrac{x}{3}[/tex]

[tex]\tt 2+\cfrac{x}{3} < 5[/tex]

(Subtract 2 from both sides):-

  • [tex]\tt 2+\cfrac{x}{3}-2 < 5-2[/tex]
  • [tex]\tt \cfrac{x}{3} < 3[/tex]

(Multiply both sides by 3):-

  • [tex]\tt \cfrac{3x}{3} < 3\times \:3[/tex]
  • [tex]\boxed{\underline{\tt x < 9}}[/tex]

~

[tex]\tt -4+\cfrac{x}{5} < -4[/tex]

(Add 4 to both sides):-

  • [tex]\tt -4+\cfrac{x}{5}+4 < -4+4[/tex]
  • [tex]\tt \cfrac{x}{5} < 0[/tex]

(Multiply both sides by 5):-

  • [tex]\tt \cfrac{5x}{5} < 0\times \:5[/tex]
  • [tex]\boxed{\underline{\tt x < 0}}[/tex]

~

[tex]\tt 13 > 3+2x[/tex]

(Subtract 3 from both sides):-

  • [tex]\tt 3+2x-3 < 13-3[/tex]
  • [tex]\tt 2x < 10[/tex]

(Divide both sides by 2):-

  • [tex]\tt \cfrac{2x}{2} < \cfrac{10}{2}[/tex]
  • [tex]\boxed{\underline{\tt x < 5}}[/tex]

~

[tex]\tt -2x+4 < 10[/tex]

(Subtract 4 from both sides):-

  • [tex]\tt -2x < 6[/tex]

(Multiply both sides both -1):-

  • [tex]\tt -2x\times-1 > 6 \times-1[/tex]
  • [tex]\tt 2x > -6[/tex]

(Divide both sides by 2):-

  • [tex]\tt \cfrac{2x}{2} > \cfrac{-6}{2}[/tex]
  • [tex]\boxed{\underline{\tt x > -3}}[/tex]

~

(Look at the Attachments)

Ver imagen Аноним
Ver imagen Аноним
Ver imagen Аноним
Ver imagen Аноним