Respuesta :
The complete factorization of the quadratic equation 6x² + 15x - 36 is given by:
[tex]y = 6\left(x - \frac{1}{4}\right)(x + 4)[/tex]
How to factor a quadratic equation?
A quadratic equation is modeled by:
[tex]y = ax^2 + bx + c[/tex]
Considering the roots [tex]x_1[/tex] and [tex]x_2[/tex], it can be factored as:
[tex]y = a(x - x_1)(x - x_2)[/tex]
In this problem, the function is:
[tex]y = 6x^2 + 15x - 36[/tex]
Hence the coefficients are [tex]a = 6, b = 15, c = -36[/tex], and:
[tex]\Delta = b^2 - 4ac = 15^2 - 4(6)(-36) = 1089[/tex]
[tex]x_1 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-15 + \sqrt{1089}}{12} = \frac{1}{4}[/tex]
[tex]x_2 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-15 - \sqrt{1089}}{12} = -4[/tex]
Hence:
[tex]y = 6\left(x - \frac{1}{4}\right)(x + 4)[/tex]
More can be learned about quadratic equations at https://brainly.com/question/24737967