Respuesta :
Answer:
2121.8 pounds will be in the account after 2 years.
Step-by-step explanation:
Here's the required formula to find the Amount :
[tex]\star{\small{\underline{\boxed{\sf{\purple{A = P\bigg(1 + \dfrac{R}{100}\bigg)^{T}}}}}}}[/tex]
- [tex]\pink\star[/tex] A = Amount
- [tex]\pink\star[/tex] P = Principle
- [tex]\pink\star[/tex] R = Rate
- [tex]\pink\star[/tex] T = Time
Substituting all the given values in the formula to find the Amount :
[tex]\implies{\small{\sf{Amount = P \bigg(1 + \dfrac{R}{100} \bigg)^{T}}}}[/tex]
[tex]\implies{\small{\sf{Amount = 2000 \bigg(1 + \dfrac{3}{100} \bigg)^{2}}}}[/tex]
[tex]{\implies{\small{\sf{Amount = 2000 \bigg( \dfrac{100 + 3}{100} \bigg)^{2}}}}}[/tex]
[tex]{\implies{\small{\sf{Amount = 2000 \bigg( \dfrac{103}{100} \bigg)^{2}}}}}[/tex]
[tex]{\implies{\small{\sf{Amount = 2000 \bigg( \dfrac{103}{100} \times \dfrac{103}{100}\bigg)}}}}[/tex]
[tex]{\implies{\small{\sf{Amount = 2000 \bigg( \dfrac{103 \times 103}{100 \times 100}\bigg)}}}}[/tex]
[tex]{\implies{\small{\sf{Amount = 2000 \bigg( \dfrac{10609}{10000}\bigg)}}}}[/tex]
[tex]{\implies{\small{\sf{Amount = 2000 \times \dfrac{10609}{10000}}}}}[/tex]
[tex]{\implies{\small{\sf{Amount = 2000 \times 1.0609}}}}[/tex]
[tex]{\implies{\small{\sf{\underline{\underline{\red{Amount = 2121.8}}}}}}}[/tex]
Hence, the amount is 2121.8 pounds.
[tex]\rule{300}{2.5}[/tex]