Respuesta :

Answer:

D) [tex]x=2[/tex] and [tex]x=4[/tex]

Step-by-step explanation:

I assume the equation to be [tex]log_6(x^2+8)=1+log_6(x)[/tex]:

[tex]log_6(x^2+8)=1+log_6(x)[/tex]

[tex]log_6(x^2+8)-log_6(x)=1[/tex]

[tex]log_6(\frac{x^2+8}{x})=1[/tex]

[tex]\frac{x^2+8}{x}=6 [/tex]

[tex]x^2+8=6x[/tex]

[tex]x^2-6x+8=0[/tex]

[tex](x-2)(x-4)=0[/tex]

[tex]x=2[/tex] and [tex]x=4[/tex]

Both solutions indeed work because you can take the logarithm of a positive number, but not a negative number, unlike the rest of the answer choices.

X=4 because it’s the only one tat makes sense and I checked