Respuesta :

Answer:

x = 2[tex]\sqrt{5} [/tex]

Step-by-step explanation:

Okay first you need to find the side of the other triangle (the side that also is a hypotenuse for the other triangle).

So we can use pythagorean's theorum

[tex]a^{2} +b^{2} =c^{2} [/tex] with c being the hypotenuse

[tex]a^{2} +2^{2} =7^{2} [/tex]

a^2 + 4 = 49 subtract 4 from both sides

a^2 = 45 then do the sqaure root

a = [tex]\sqrt{45} [/tex] which can be simplified to 3[tex]\sqrt{5} [/tex]

so...  3[tex]\sqrt{5} [/tex] or  [tex]\sqrt{45} [/tex] is our hypotenuse for the other triangle

[tex]5^{2} +b^{2} = \sqrt{45} ^{2} [/tex]

25 + b^2 = 45 subtract 25 from both sides

b^2 = 20 then do the square root

b (or x in this problem) = [tex]\sqrt{20} [/tex]

or when simplified, 2[tex]\sqrt{5} [/tex]