2. Solve for the values of x by factoring.

Answer:
x = - 3, x = - 6
Step-by-step explanation:
[tex] {x}^{2} + 9x + 18 = 0 \\ \\ {x}^{2} + 6x + 3x + 18 = 0 \\ \\ x(x + 6) + 3(x + 6) = 0 \\ \\ (x + 6)(x + 3) = 0 \\\\ x + 3 = 0 \: \: or \: \: x + 6 = 0 \\ \\ x = - 3, \: \: or \: \: x = - 6 \\ \\[/tex]
Answer:
[tex] \red{\boxed{ \green {x = -3 , x = - 6}}}[/tex]
Step-by-step explanation:
[tex] {x}^{2} + 9x + 18 = 0 \\ \implies \:x²+3x+6x+18=0\\ \implies \: x(x+3)+6(x+3)=0\\ \implies(x + 3)(x + 6) = 0 \\ \implies \: x = -3 , x = - 6[/tex]