Respuesta :
9.56 m of the wire should be used for the square, to maximize the total area of the wire
Let x be the side length of the square.
So, the perimeter of the square is:
[tex]\mathbf{P_s=4x}[/tex]
Let y represent the side length of the equilateral triangle.
So, the perimeter of the triangle is:
[tex]\mathbf{P_t=3y}[/tex]
The length of the wire is given as:
[tex]\mathbf{P=22}[/tex]
This implies that:
[tex]\mathbf{P_s + P_t=22}[/tex]
Substitute values for Ps and Pt
[tex]\mathbf{4x + 3y=22}[/tex]
Make y the subject
[tex]\mathbf{y=\frac{22 -4x}3}[/tex]
For an equilateral triangle of side length y, the height (h) of the triangle is:
[tex]\mathbf{h =\frac y2\sqrt 3}[/tex]
The area of the triangle is then calculated as:
[tex]\mathbf{A_t = \frac 12 yh}[/tex]
This gives
[tex]\mathbf{A_t = \frac 12 y\times \frac y2\sqrt 3}[/tex]
[tex]\mathbf{A_t = \frac{y^2}{4}\sqrt 3}[/tex]
The area of the square is:
[tex]\mathbf{A_s = x^2}[/tex]
So, the total area is:
[tex]\mathbf{A = A_s + A_t}[/tex]
[tex]\mathbf{A = x^2 + \frac{y^2}{4}\sqrt 3}[/tex]
Substitute [tex]\mathbf{y=\frac{22 -4x}3}[/tex]
[tex]\mathbf{A = x^2 + (\frac{22 - 4x}{3})^2 \times \frac{\sqrt 3}{4}}[/tex]
Differentiate
[tex]\mathbf{A' = 2x + \frac{\sqrt 3}{4} \times \frac 19 \times 2(22 - 4x) \times (-4)}[/tex]
[tex]\mathbf{A' = 2x - \sqrt 3 \times \frac 19 \times 2(22 - 4x) }[/tex]
[tex]\mathbf{A' = 2x - \frac{2\sqrt 3}9 (22 - 4x) }[/tex]
Set to 0
[tex]\mathbf{2x - \frac{2\sqrt 3}9 (22 - 4x) = 0}[/tex]
Rewrite as:
[tex]\mathbf{2x = \frac{2\sqrt 3}9 (22 - 4x) }[/tex]
Divide through by 2
[tex]\mathbf{x = \frac{\sqrt 3}9 (22 - 4x) }[/tex]
Multiply through by 9
[tex]\mathbf{9x = \sqrt 3 (22 - 4x) }[/tex]
Open bracket
[tex]\mathbf{9x = 22\sqrt 3 - 4x\sqrt 3 }[/tex]
Collect like terms
[tex]\mathbf{9x +4x\sqrt 3= 22\sqrt 3 }[/tex]
Factor out x
[tex]\mathbf{x(9 +4\sqrt 3)= 22\sqrt 3 }[/tex]
Solve for x
[tex]\mathbf{x= \frac{22\sqrt 3}{9 +4\sqrt 3} }[/tex]
Simplify
[tex]\mathbf{x= \frac{38.11}{9 +6.93} }[/tex]
[tex]\mathbf{x= \frac{38.11}{15.93} }[/tex]
[tex]\mathbf{x= 2.39 }[/tex]
Recall that, the perimeter of the square is:
[tex]\mathbf{P_s=4x}[/tex]
So, we have:
[tex]\mathbf{P_s=4 \times 2.39}[/tex]
[tex]\mathbf{P_s=9.56}[/tex]
Hence, 9.56 m of the wire should be used for the square
Read more about maximizing lengths at:
https://brainly.com/question/3433355