Respuesta :
Answer:
[tex]y=-\displaystyle\frac{4}{5}x+\displaystyle\frac{3}{5}[/tex]
Step-by-step explanation:
Hi there!
Linear equations are typically organized in slope-intercept form: [tex]y=mx+b[/tex] where m is the slope of the line and b is the y-intercept (the value of y when the line crosses the y-axis).
1) Determine the slope (m)
[tex]m=\displaystyle\frac{y_2-y_1}{x_2-x_1}[/tex] where two points that fall on the line are [tex](x_1,y_1)[/tex] and [tex](x_2,y_2)[/tex]
Plug in the given points (2, -1) and (-3, 3):
[tex]m=\displaystyle\frac{-1-3}{2-(-3)}\\\\m=\displaystyle\frac{-4}{2+3}\\\\m=-\displaystyle\frac{4}{5}[/tex]
Therefore, the slope of the line is [tex]-\displaystyle\frac{4}{5}[/tex]. Plug this into [tex]y=mx+b[/tex]:
[tex]y=-\displaystyle\frac{4}{5}x+b[/tex]
2) Determine the y-intercept (b)
[tex]y=-\displaystyle\frac{4}{5}x+b[/tex]
Plug in one of the given points and solve for b:
[tex]-1=-\displaystyle\frac{4}{5}(2)+b\\\\-1=-\displaystyle\frac{8}{5}+b\\\\b=\displaystyle\frac{3}{5}[/tex]
Therefore, the y-intercept is [tex]\displaystyle\frac{3}{5}[/tex]. Plug this back into [tex]y=-\displaystyle\frac{4}{5}x+b[/tex]:
[tex]y=-\displaystyle\frac{4}{5}x+\displaystyle\frac{3}{5}[/tex]
I hope this helps!