kindly help answering the question.
![kindly help answering the question class=](https://us-static.z-dn.net/files/dbe/1d9b13660e2a2e3bc94313603deb4be0.jpg)
Answer:
[tex]\displaytstyle \theta \approx \left\{16.3249^\circ, 59.6388^\circ, 196.3249^\circ, 239.6388^\circ\right\}[/tex]
Or, their exact solutions:
[tex]\displaystyle \theta = \left\{\arctan\frac{2-\sqrt{2}}{2} , \arctan\frac{2+\sqrt{2}}{2}, 180^\circ + \arctan\frac{2-\sqrt{2}}{2}, 180^\circ + \arctan\frac{2+\sqrt{2}}{2}\right\}[/tex]
Step-by-step explanation:
We want to solve the equation:
[tex]\displaystyle 2\sec^2 \theta = 4\tan \theta + 1[/tex]
For 0° ≤ θ ≤ 360°.
Recall that tan²(θ) + 1 = sec²(θ). Substitute:
[tex]\displaystyle 2\left(\tan^2 \theta + 1\right) = 4\tan \theta + 1[/tex]
Distribute:
[tex]\displaystyle 2\tan^2\theta + 2 = 4\tan\theta + 1[/tex]
Isolate:
[tex]\displaystyle 2\tan^2\theta - 4\tan\theta + 1 = 0[/tex]
This is in quadratic form. Thus, we can solve it like a quadratic. Let u = tan(θ). Hence:
[tex]\displaystyle 2u^2 - 4u + 1=0[/tex]
The equation is not factorable. Therefore, we can consider using the quadratic formula:
[tex]\displaystyle x = \frac{-b\pm\sqrt{b^2 -4ac}}{2a}[/tex]
In this case, a = 2, b = -4, and c = 1. Substitute and evaluate:
[tex]\displaytstyle \begin{aligned} u &= \frac{-(-4)\pm\sqrt{(-4)^2 - 4(2)(1)}}{2(2)} \\ \\ &= \frac{4\pm\sqrt{8}}{4} \\ \\ &= \frac{4\pm2\sqrt{2}}{4} \\ \\ &= \frac{2\pm\sqrt{2}}{2}\end{aligned}[/tex]
Therefore:
[tex]\displaystyle u = \frac{2+\sqrt{2}}{2} \approx 1.7071\text{ or } u = \frac{2-\sqrt{2}}{2}\approx 0.2929[/tex]
Back-substitute:
[tex]\displaystyle \tan\theta = \frac{2+\sqrt{2}}{2} \text{ or } \tan \theta = \frac{2-\sqrt{2}}{2}[/tex]
Take the inverse tangent of both equations. Hence:
[tex]\displaystyle \theta = \arctan\frac{2+\sqrt{2}}{2} \approx 59.6388^\circ\text{ or } \theta = \arctan\frac{2-\sqrt{2}}{2}\approx 16.3249^\circ[/tex]
The same value of tangent occurs twice in every full rotation. Hence, by reference angles, the other two solutions are:
[tex]\displaystyle \theta = 180^\circ + \arctan\frac{2+\sqrt{2}}{2} \approx 239.6388^\circ \\ \\ \theta = 180^\circ + \arctan\frac{2-\sqrt{2}}{2} \approx 196.3249^\circ[/tex]
In conclusion, the four solutions are:
[tex]\displaystyle \theta = \left\{\arctan\frac{2-\sqrt{2}}{2} , \arctan\frac{2+\sqrt{2}}{2}, 180^\circ + \arctan\frac{2-\sqrt{2}}{2}, 180^\circ + \arctan\frac{2+\sqrt{2}}{2}\right\}[/tex]Or, approximately:
[tex]\displaytstyle \theta \approx \left\{16.3249^\circ, 59.6388^\circ, 196.3249^\circ, 239.6388^\circ\right\}[/tex]