The angle,2Θ, lies in the third quadrant such that cos2Θ=-2/5. Determine an exact value for tanΘ . Show your work including any diagrams if you plan to use them. (3 marks)

Respuesta :

Answer:

[tex]tan(\theta)=\frac{\sqrt{21}}{3}[/tex]

Step-by-step explanation:

1. Approach

One is given the following information:

[tex]cos(2\theta)=-\frac{2}{5}[/tex]

One can rewrite this as:

[tex]cos(2\theta)=-0.4[/tex]

Also note, the problem says that the angle ([tex]2\theta[/tex]) is found in the third quadrant.

Using the trigonometric identities ([tex]cos(2\theta)=2(cos^2(\theta))-1[/tex]) and ([tex]cos(2\theta)=1-2(sin^2(\theta))[/tex]) one can solve for the values of ([tex]cos(\theta)[/tex]) and ([tex]sin(\theta)[/tex]). After doing so one can use another trigonometric identity ([tex]tan(\theta)=\frac{sin(\theta)}{cos(\theta)}[/tex]).  Substitute the given information into the ratio and simplify.

2. Solve for [tex](cos(\theta))[/tex]

Use the following identity to solve for ([tex]cos(\theta)[/tex]) when given the value ([tex]cos(2\theta)[/tex]).

[tex]cos(2\theta)=2(cos^2(\theta))-1[/tex]

Substitute the given information in and solve for ([tex]cos(\theta)[/tex]).

[tex]cos(2\theta)=2(cos^2(\theta))-1[/tex]

[tex]-0.4=2(cos^2(\theta))-1[/tex]

Inverse operations,

[tex]-0.4=2(cos^2(\theta))-1[/tex]

[tex]0.6=2(cos^2(\theta))[/tex]

[tex]0.3=cos^2(\theta)[/tex]

[tex]\sqrt{0.3}=cos(\theta)[/tex]

Since this angle is found in the third quadrant its value is actually:

[tex]cos(\theta)=-\sqrt{0.3}[/tex]

3. Solve for [tex](sin(\theta))[/tex]

Use the other identity to solve for the value of ([tex]sin(\theta)[/tex]) when given the value of ([tex]cos(2\theta)[/tex]).

[tex]cos(2\theta)=1-2(sin^2(\theta))[/tex]

Substitute the given information in and solve for ([tex]sin(\theta)[/tex]).

[tex]cos(2\theta)=1-2(sin^2(\theta))[/tex]

[tex]-0.4=1-2(sin^2(\theta))[/tex]

Inverse operations,

[tex]-0.4=1-2(sin^2(\theta))[/tex]

[tex]-1.4=-2(sin^2(\theta))[/tex]

[tex]0.7=sin^2(\theta)[/tex]

[tex]\sqrt{0.7}=sin(\theta)[/tex]

Since this angle is found in the third quadrant, its value is actually:

[tex]sin(\theta)=-\sqrt{0.7}[/tex]

4. Solve for [tex](tan(\theta))[/tex]

One can use the following identity to solve for [tex](tan(\theta))[/tex];

[tex]tan(\theta)=\frac{sin(\theta)}{cos(\theta)}[/tex]

Substitute the values on just solved for and simplify,

[tex]tan(\theta)=\frac{sin(\theta)}{cos(\theta)}[/tex]

[tex]tan(\theta)=\frac{-\sqrt{0.7}}{-\sqrt{0.3}}[/tex]

[tex]tan(\theta)=\frac{\sqrt{0.7}}{\sqrt{0.3}}[/tex]

[tex]tan(\theta)=\frac{\sqrt{\frac{7}{10}}}{\sqrt{\frac{3}{10}}}[/tex]

Rationalize the denominator,

[tex]tan(\theta)=\frac{\sqrt{\frac{7}{10}}}{\sqrt{\frac{3}{10}}}[/tex]

[tex]tan(\theta)=\frac{\sqrt{\frac{7}{10}}}{\sqrt{\frac{3}{10}}}*\frac{\sqrt{\frac{3}{`0}}}{\sqrt{\frac{3}{10}}}[/tex]

[tex]tan(\theta)=\frac{\sqrt{\frac{7}{10}*\frac{3}{10}}}{\sqrt{\frac{3}{10}*\frac{3}{10}}}[/tex]

[tex]tan(\theta)=\frac{\sqrt{\frac{21}{100}}}{\frac{3}{10}}[/tex]

[tex]tan(\theta)=\frac{\frac{\sqrt{21}}{10}}{\frac{3}{10}}[/tex]

[tex]tan(\theta)=\frac{\sqrt{21}}{10}*\frac{10}{3}[/tex]

[tex]tan(\theta)=\frac{\sqrt{21}}{3}[/tex]

ACCESS MORE