Respuesta :

r3t40

[tex]\frac{11z}{z+3}=13-i,z\in\mathbb{C}[/tex]

First, multiply both sides by [tex]z+3[/tex],

[tex]11z=(13-i)(z+3)[/tex]

[tex]13z+39-iz-3i=11z[/tex]

Collect terms and put z on the left,

[tex]2z-iz=3i-39[/tex]

[tex]z(2-i)=3i-39[/tex]

[tex]z=\frac{3i-39}{2-i}[/tex]

Division of complex numbers is defined by multiplying both denominator and numerator with complex conjugate of the denominator,

[tex]z=3\frac{(i-13)(2+i)}{(2-i)(2+i)}[/tex]

Multiply out,

[tex]z=3\frac{2i-1-26-13i}{5}[/tex]

[tex]z=3\frac{-11i-27}{5}[/tex]

The result is,

[tex]z=-\frac{81}{5}-\frac{33}{5}i[/tex]

Hope this helps :)