[tex]\frac{11z}{z+3}=13-i,z\in\mathbb{C}[/tex]
First, multiply both sides by [tex]z+3[/tex],
[tex]11z=(13-i)(z+3)[/tex]
[tex]13z+39-iz-3i=11z[/tex]
Collect terms and put z on the left,
[tex]2z-iz=3i-39[/tex]
[tex]z(2-i)=3i-39[/tex]
[tex]z=\frac{3i-39}{2-i}[/tex]
Division of complex numbers is defined by multiplying both denominator and numerator with complex conjugate of the denominator,
[tex]z=3\frac{(i-13)(2+i)}{(2-i)(2+i)}[/tex]
Multiply out,
[tex]z=3\frac{2i-1-26-13i}{5}[/tex]
[tex]z=3\frac{-11i-27}{5}[/tex]
The result is,
[tex]z=-\frac{81}{5}-\frac{33}{5}i[/tex]
Hope this helps :)