Respuesta :
Using the domain concept, it is found that the domain of the function is: x is an element of all real numbers such that [tex]x \neq (-\frac{3}{2}, 4)[/tex], second option.
----------------------
- The domain of a function is all possible values that the input value x can assume.
- The domain of a fraction is all real values of x except the zeros of the denominator.
----------------------
The function is:
[tex]f(x) = \frac{2x}{2x^3 - 5x^2 - 12x} = \frac{2x}{x(2x^2 - 5x - 12)} = \frac{2}{2x^2 - 5x - 12}[/tex]
The points outside the domain are the zeros of [tex]2x^2 - 5x - 12[/tex], which we find solving a quadratic equation.
----------------------
Solving a quadratic equation:
Given a second order polynomial expressed by the following equation:
[tex]ax^{2} + bx + c, a\neq0[/tex].
This polynomial has roots [tex]x_{1}, x_{2}[/tex] such that [tex]ax^{2} + bx + c = a(x - x_{1})*(x - x_{2})[/tex], given by the following formulas:
[tex]x_{1} = \frac{-b + \sqrt{\Delta}}{2*a}[/tex]
[tex]x_{2} = \frac{-b - \sqrt{\Delta}}{2*a}[/tex]
[tex]\Delta = b^{2} - 4ac[/tex]
----------------------
[tex]2x^2 - 5x - 12[/tex] is a quadratic equation with [tex]a = 2, b = -5, c = -12[/tex].
[tex]\Delta = b^{2} - 4ac = (-5)^2 - 4(2)(-12) = 121[/tex]
[tex]x_{1} = \frac{-(-5) + \sqrt{121}}{2(2)} = 4[/tex]
[tex]x_{2} = \frac{-(-5) - \sqrt{121}}{2(2)} = -\frac{6}{4} = -\frac{3}{2}[/tex]
----------------------
The domain is: x is an element of all real numbers such that [tex]x \neq (-\frac{3}{2}, 4)[/tex], second option.
A similar problem is given at https://brainly.com/question/13136492