Answer:
3.983 MW
Explanation:
Given that:
At the inlet:
Velocity (v₁) = 30 m/s
Enthalpy (h₁) = 3348 kJ/kg
At the outlet:
Velocity (v₂) = 60 m/s
Enthalpy (h₂) = 2550 kJ/kg
Mass flow rate (m) = m₁ = m₂ = 5kg/s
According to the steady flow energy equation:
[tex]Q+ m_1 (h_1 + \dfrac{v_1^2}{2000}+ \dfrac{gz_1}{1000} )= m_2(h_2+\dfrac{v_2^2}{2000}+\dfrac{gz_2}{1000})+W_{shaft}[/tex]
Since the elevation (z) is negligible and flow via the turbine is adiabatic:
Then,
Q = 0 and z₁ = z₂
∴
[tex]W_{shaft} = (mh_1-mh_2) + (\dfrac{mv_1^2-mv_2^2}{2000})[/tex]
[tex]W_{shaft} = ((5*3348) -(5*2550)) + (\dfrac{(5*(30)^2)-(5*(60)^2)}{2000})[/tex]
[tex]W_{shaft} = (16740-12750) + (\dfrac{4500-18000}{2000})[/tex]
[tex]W_{shaft} = (16740-12750) + (-6.75)[/tex]
[tex]W_{shaft} = 3983.25 \ kW[/tex]
[tex]\mathbf{W_{shaft} = 3.983 \ MW}[/tex]