In △ABC, m∠A=50∘, m∠B=60∘, and m∠C=70∘.
If △ABC is rotated 90∘ counterclockwise to △XYZ, what is the measure of angle Z?

Respuesta :

Given:

In [tex]\Delta ABC, m\angle A=50^\circ, m\angle B=60^\circ[/tex] and [tex]m\angle C=70^\circ[/tex].

[tex]\Delta ABC[/tex] is rotated [tex]90^\circ[/tex] counterclockwise to [tex]\Delta XYZ[/tex].

To find:

The measure of angle Z.

Solution:

We know that the rotation is a rigid transformation. It means the image and figure are congruent to each other.

[tex]\Delta ABC[/tex] is rotated [tex]90^\circ[/tex] counterclockwise to [tex]\Delta XYZ[/tex]. So, [tex]\Delta ABC\cong \Delta XYZ[/tex].

[tex]\angle C\cong \angle Z[/tex]                      (CPCTC)

[tex]m\angle C=m\angle Z[/tex]

[tex]70^\circ=m\angle Z[/tex]

Therefore, the measure of angle Z is 70 degrees.

ACCESS MORE