Given:
In [tex]\Delta ABC, m\angle A=50^\circ, m\angle B=60^\circ[/tex] and [tex]m\angle C=70^\circ[/tex].
[tex]\Delta ABC[/tex] is rotated [tex]90^\circ[/tex] counterclockwise to [tex]\Delta XYZ[/tex].
To find:
The measure of angle Z.
Solution:
We know that the rotation is a rigid transformation. It means the image and figure are congruent to each other.
[tex]\Delta ABC[/tex] is rotated [tex]90^\circ[/tex] counterclockwise to [tex]\Delta XYZ[/tex]. So, [tex]\Delta ABC\cong \Delta XYZ[/tex].
[tex]\angle C\cong \angle Z[/tex] (CPCTC)
[tex]m\angle C=m\angle Z[/tex]
[tex]70^\circ=m\angle Z[/tex]
Therefore, the measure of angle Z is 70 degrees.