Respuesta :
Given:
Total fish (Sea bass and mackerel) = [tex]7\dfrac{2}{5}[/tex] pounds
Sea bass = [tex]4\dfrac{5}{8}[/tex] pounds
He gave away [tex]1\dfrac{7}{8}[/tex] pounds of mackerel.
To find:
The remaining mackerel.
Solution:
We know that,
Mackerel = Total fish - Sea bass
[tex]\text{Mackerel}=7\dfrac{2}{5}-4\dfrac{5}{8}[/tex]
[tex]\text{Mackerel}=\dfrac{37}{5}-\dfrac{37}{8}[/tex]
[tex]\text{Mackerel}=\dfrac{296-185}{40}[/tex]
[tex]\text{Mackerel}=\dfrac{111}{40}[/tex]
He gave away [tex]1\dfrac{7}{8}[/tex] pounds of mackerel. So, the remaining mackerel is:
[tex]\text{Remaining Mackerel}=\dfrac{111}{40}-1\dfrac{7}{8}[/tex]
[tex]\text{Remaining Mackerel}=\dfrac{111}{40}-\dfrac{15}{8}[/tex]
[tex]\text{Remaining Mackerel}=\dfrac{111-75}{40}[/tex]
[tex]\text{Remaining Mackerel}=\dfrac{36}{40}[/tex]
[tex]\text{Remaining Mackerel}=\dfrac{9}{10}[/tex]
Therefore, the remaining Mackerel is [tex]\dfrac{9}{10}[/tex] pounds or 0.9 pounds.
Answer:
The amount of Mackerel left is 9/10.
Step-by-step explanation:
total fish = 7 2/5 pounds
sea bass = 4 5/8
The amount of mackerel =
[tex]7\frac{2}{5}-4\frac{5}{8}\\\\=\frac{37}{5}-\frac{37}{8}\\\\=\frac{296-185}{40}\\\\=2 \frac{31}{40}[/tex]
Mackerel left =
[tex]2 \frac{31}{40}-1\frac{7}{8}\\\\= \frac{111}{40}-\frac{15}{8}\\\\=\frac{111-75}{40}\\\\=\frac{36}{40}\\\\=\frac{9}{10}[/tex]