Respuesta :

Given:

Volume of a sphere is [tex]\dfrac{28}{3}[/tex] times the surface area.

To find:

The surface area and the volume of the sphere.

Solution:

Volume of a sphere:

[tex]V=\dfrac{4}{3}\pi r^3[/tex]              ...(i)

Surface area of a sphere:

[tex]A=4\pi r^2[/tex]                      ...(ii)

Where, r is the radius of the sphere.

Volume of a sphere is [tex]\dfrac{28}{3}[/tex] times the surface area.

[tex]V=\dfrac{28}{3}\times A[/tex]

[tex]\dfrac{4}{3}\pi r^3=\dfrac{28}{3}\times 4\pi r^2[/tex]

Multiply both sides by 3.

[tex]4\pi r^3=112\pi r^2[/tex]

[tex]\dfrac{\pi r^3}{\pi r^2}=\dfrac{112}{4}[/tex]

[tex]r=28[/tex]

Using (i), the volume of the sphere is:

[tex]V=\dfrac{4}{3}\times \dfrac{22}{7}\times (28)^3[/tex]

[tex]V\approx 91989[/tex]

Using (ii), the surface area of the sphere is:

[tex]A=4\times \dfrac{22}{7}\times (28)^2[/tex]

[tex]A=9856[/tex]

Therefore, the surface area of the sphere is 9856 sq. units and the volume of the sphere is 91989 cubic units.