A particle is moving with the given data. Find the position of the particle.

a(t) = [tex]t^{2}[/tex] − 4t + 5, s(0) = 0, s(1) = 20

How do I find s(t)=?

Respuesta :

Recall that

[tex]\dfrac{dv(t)}{dt} = a(t) \Rightarrow dv(t) = a(t)dt[/tex]

Integrating this expression, we get

[tex]\displaystyle v(t) = \int a(t)dt = \int(t^2 - 4t + 5)dt[/tex]

[tex]\:\:\:\:\:\:\:= \frac{1}{3}t^3 - 2t^2 + 5t + C_1[/tex]

Also, recall that

[tex]\dfrac{ds(t)}{dt} = v(t)[/tex] or

[tex]\displaystyle s(t) = \int v(t)dt = \int (\frac{1}{3}t^3 - 2t^2 + 5t + C_1)dt[/tex]

[tex]\:\:\:\:\:\:\:= \frac{1}{12}t^4 - \frac{2}{3}t^3 + \frac{5}{2}t^2 + C_1t + C_2[/tex]

Next step is to find [tex]C_1\:\text{and}\:C_2[/tex]. We know that at t = 0, s = 0, which gives us [tex]C_2 = 0[/tex]. At t = 1, s = 20, which gives us

[tex]s(1) = \frac{1}{12}(1)^4 - \frac{2}{3}(1)^3 + \frac{5}{2}(1)^2 + C_1(1)[/tex]

[tex]= \frac{1}{12} - \frac{2}{3} + \frac{5}{2} + C_1 = \frac{23}{12} + C_1 = 20[/tex]

or

[tex]C_1 = \dfrac{217}{12}[/tex]

Therefore, s(t) can be written as

[tex]s(t) = \frac{1}{12}t^4 - \frac{2}{3}t^3 + \frac{5}{2}t^2 + \frac{217}{12}t[/tex]