Flying against the wind, an airplane travels 3800 kilometers in 4 hours. Flying with the wind, the same plane travels 3750 kilometers in 3 hours. What is the rate of the plane in still air and what is the rate of the wind?

Respuesta :

Answer:

[tex]V_w =1100[/tex] ---- velocity of wind

[tex]V_a = 150[/tex] --- velocity of airplane

Step-by-step explanation:

Given

[tex]V_a \to[/tex] velocity of airplane

[tex]V_w \to[/tex] velocity of wind

Flying with the wind, the distance (d) is:

[tex]d = (V_w + V_a) * t[/tex]

Where d and t are distance travel and time spent with the wind

So:

[tex]3750 = (V_w + V_a) * 3[/tex]

Divide by 3

[tex]1250 = (V_w + V_a)[/tex]

Flying against the wind, the distance (d) is:

[tex]d = (V_w - V_a) * t[/tex]

Where d and t are distance travel and time against with the wind

So:

[tex]3800 = (V_w - V_a) * 4[/tex]

Divide by 4

[tex]950 = (V_w - V_a)[/tex]

Make [tex]V_w[/tex] the subject

[tex]V_w= 950 + V_a[/tex]

Substitute: [tex]V_w= 950 + V_a[/tex] in [tex]1250 = (V_w + V_a)[/tex]

[tex]1250 = 950 + V_a + V_a[/tex]

[tex]1250 = 950 + 2V_a[/tex]

Collect like terms

[tex]2V_a = 1250 -950[/tex]

[tex]2V_a = 300[/tex]

Divide by 2

[tex]V_a = 150[/tex]

Substitute [tex]V_a = 150[/tex] in [tex]V_w= 950 + V_a[/tex]

[tex]V_w =950 +150[/tex]

[tex]V_w =1100[/tex]

ACCESS MORE