Answer:
[tex]V_w =1100[/tex] ---- velocity of wind
[tex]V_a = 150[/tex] --- velocity of airplane
Step-by-step explanation:
Given
[tex]V_a \to[/tex] velocity of airplane
[tex]V_w \to[/tex] velocity of wind
Flying with the wind, the distance (d) is:
[tex]d = (V_w + V_a) * t[/tex]
Where d and t are distance travel and time spent with the wind
So:
[tex]3750 = (V_w + V_a) * 3[/tex]
Divide by 3
[tex]1250 = (V_w + V_a)[/tex]
Flying against the wind, the distance (d) is:
[tex]d = (V_w - V_a) * t[/tex]
Where d and t are distance travel and time against with the wind
So:
[tex]3800 = (V_w - V_a) * 4[/tex]
Divide by 4
[tex]950 = (V_w - V_a)[/tex]
Make [tex]V_w[/tex] the subject
[tex]V_w= 950 + V_a[/tex]
Substitute: [tex]V_w= 950 + V_a[/tex] in [tex]1250 = (V_w + V_a)[/tex]
[tex]1250 = 950 + V_a + V_a[/tex]
[tex]1250 = 950 + 2V_a[/tex]
Collect like terms
[tex]2V_a = 1250 -950[/tex]
[tex]2V_a = 300[/tex]
Divide by 2
[tex]V_a = 150[/tex]
Substitute [tex]V_a = 150[/tex] in [tex]V_w= 950 + V_a[/tex]
[tex]V_w =950 +150[/tex]
[tex]V_w =1100[/tex]