Respuesta :

Answer:

Step-by-step explanation:

In parallel lines gradient are the same so first re-arrange the given equation.

1. Ax+By=C

2. The equation is given in standard format [tex]3x-y=4[/tex]

Solve for m.

1. [tex]3x-y=4[/tex]

2. [tex]\frac{3x}{3} =\frac{4}{3}+\frac{y}{3}[/tex]

3. [tex]x=\frac{4}{3}+\frac{y}{3}[/tex]

Find the value of b using the formula for the equation of line.

[tex]y=mx+b[/tex]

Substitute the value of m into the equation.

[tex]y=(\frac{4}{3}+\frac{y}{3}) . x+b[/tex]

Substitute the value of x into the equation

[tex]y=(\frac{4}{3}+\frac{y}{3}).(3)+b[/tex]

Substitute the value of y into the equation

[tex]2=(\frac{4}{3}+\frac{2}{3}).(3)+b[/tex]

Find B

[tex]b= -4[/tex]

Now we know the value of m and b. Substitute them into y=mx+b to find the equation of the line.

[tex]y=\frac{4}{3} x+\frac{1}{3} yx-4[/tex]

-Please Mark As Brainliest

ACCESS MORE