Answer:
Step-by-step explanation:
In parallel lines gradient are the same so first re-arrange the given equation.
1. Ax+By=C
2. The equation is given in standard format [tex]3x-y=4[/tex]
Solve for m.
1. [tex]3x-y=4[/tex]
2. [tex]\frac{3x}{3} =\frac{4}{3}+\frac{y}{3}[/tex]
3. [tex]x=\frac{4}{3}+\frac{y}{3}[/tex]
Find the value of b using the formula for the equation of line.
[tex]y=mx+b[/tex]
Substitute the value of m into the equation.
[tex]y=(\frac{4}{3}+\frac{y}{3}) . x+b[/tex]
Substitute the value of x into the equation
[tex]y=(\frac{4}{3}+\frac{y}{3}).(3)+b[/tex]
Substitute the value of y into the equation
[tex]2=(\frac{4}{3}+\frac{2}{3}).(3)+b[/tex]
Find B
[tex]b= -4[/tex]
Now we know the value of m and b. Substitute them into y=mx+b to find the equation of the line.
[tex]y=\frac{4}{3} x+\frac{1}{3} yx-4[/tex]
-Please Mark As Brainliest