Answer:
The angular velocity of the tennis ball is 10 radians per second.
Step-by-step explanation:
The tennis ball can be represented as a particle, the angular momentum ([tex]L[/tex]), in kilogram-square meter per second, of the tennis ball is described by the following formula:
[tex]L = m\cdot r^{2}\cdot \omega[/tex] (1)
Where:
[tex]m[/tex] - Mass of the tennis ball, in kilograms.
[tex]r[/tex] - Radius of gyration, in meters.
[tex]\omega[/tex] - Angular velocity, in radians per second.
If we know that [tex]m = 0.68\,kg[/tex], [tex]r = 0.02\,m[/tex] and [tex]L = 2.72\times 10^{-3}\,\frac{kg \cdot m^{2}}{s}[/tex], then the angular velocity of the tennis ball is:
[tex]\omega = \frac{L}{m\cdot r^{2}}[/tex]
[tex]\omega = \frac{2.72\times 10^{-3}\,\frac{kg\cdot m^{2}}{s} }{(0.68\,kg)\cdot (0.02\,m)^{2}}[/tex]
[tex]\omega = 10\,\frac{rad}{s}[/tex]
The angular velocity of the tennis ball is 10 radians per second.