Respuesta :

msm555

Answer:

Solution given:

Y=90°

∠X=73°.

∠ZWY=80°

and XW=80.

ZY=?

We know that

In right angled triangle ∆ XYZ

Tan 73=[tex] \frac{p}{h} [/tex]

3.27=[tex] \frac{yz}{xy} [/tex]

3.27×[xy]=yz

xw+wy=[tex] \frac{yz}{3.27} [/tex]

wy=[tex] \frac{yz}{3.27} [/tex]-80...........(1)

again

In right angled triangle WYZ

Tan 80=[tex] \frac{yz}{wy} [/tex]

5.67×wy=yz

wy=[tex] \frac{yz}{5.67} [/tex]

yz=5.67×wy............................................(2)

Equating equation 1&2

[tex] \frac{yz}{5.67} [/tex]=[tex] \frac{yz}{3.27} [/tex]-80

[tex] \frac{yz}{3.27} [/tex]-[tex] \frac{yz}{5.67} [/tex]=80

5.67yz-3.27yz=80*5.67*3.27

2.4yz =1483.272

yz=[tex] \frac{1483.272}{2.4} [/tex]

yz=618.03

:.y=618.03unit.the length of ZY to the nearest 100th is 618.

ACCESS MORE