In ΔXYZ, ∠Y=90° and ∠X=73°. ∠ZWY=80° and XW=80. Find the length of ZY to the nearest 100th.

Answer:
Solution given:
Y=90°
∠X=73°.
∠ZWY=80°
and XW=80.
ZY=?
We know that
In right angled triangle ∆ XYZ
Tan 73=[tex] \frac{p}{h} [/tex]
3.27=[tex] \frac{yz}{xy} [/tex]
3.27×[xy]=yz
xw+wy=[tex] \frac{yz}{3.27} [/tex]
wy=[tex] \frac{yz}{3.27} [/tex]-80...........(1)
again
In right angled triangle WYZ
Tan 80=[tex] \frac{yz}{wy} [/tex]
5.67×wy=yz
wy=[tex] \frac{yz}{5.67} [/tex]
yz=5.67×wy............................................(2)
Equating equation 1&2
[tex] \frac{yz}{5.67} [/tex]=[tex] \frac{yz}{3.27} [/tex]-80
[tex] \frac{yz}{3.27} [/tex]-[tex] \frac{yz}{5.67} [/tex]=80
5.67yz-3.27yz=80*5.67*3.27
2.4yz =1483.272
yz=[tex] \frac{1483.272}{2.4} [/tex]
yz=618.03
:.y=618.03unit.the length of ZY to the nearest 100th is 618.