Estimate the values to complete the table.

Answer:
Step-by-step explanation:
For angle C,
cos(∠C) = [tex]\frac{\text{Adjacent side}}{\text{Hypotenuse}}[/tex] = 0.97
sin(∠C) = [tex]\frac{\text{Opposite side}}{\text{Hypotenuse}}[/tex] = 0.26
tan(∠C) = [tex]\frac{\text{Adjacent side}}{\text{Adjacent side}}[/tex] = 0.27
Therefore, from the triangle ABC,
cos(∠A) = cos(90° - ∠C)
= sin(∠C)
= 0.26
sin(∠A) = sin(90 - ∠A)
= cos(∠A)
= 0.97
tan(∠A) = [tex]\frac{\text{sinA}}{\text{cosA}}=\frac{0.97}{0.26}[/tex]
= 3.73
Angle [tex]\frac{\text{Adjacent side}}{\text{Hypotenuse}}[/tex] [tex]\frac{\text{Opposite side}}{\text{Hypotenuse}}[/tex] [tex]\frac{\text{Opposite side}}{\text{Adjacent side}}[/tex]
A 0.26 0.97 3.73