Respuesta :

Answer:

[tex]y^{ \frac{3}{2}}[/tex]

Step-by-step explanation:

From the question posted, you've already initiated the solution but you applied a wrong approach;

Given

[tex]y^{\frac{4}{3}} . y^{\frac{2}{3} - \frac{1}{2}}[/tex]

Required

Simplify; using power property

Power property states that;

[tex]a^m.a^n = a^{m+n}[/tex]

[tex]a^m/a^n = a^{m-n}[/tex]

By comparison; we have to apply the first property;

This is shown below;

[tex]y^{\frac{4}{3}+\frac{2}{3} - \frac{1}{2}}[/tex]

Add fraction of the same numerator

[tex]y^{\frac{4+2}{3} - \frac{1}{2}}[/tex]

[tex]y^{\frac{6}{3} - \frac{1}{2}}[/tex]

[tex]y^{2 - \frac{1}{2}}[/tex]

Subtract fraction

[tex]y^{ \frac{4-1}{2}}[/tex]

[tex]y^{ \frac{3}{2}}[/tex]

The expression [tex]y^{\frac{4}{3}} . y^{\frac{2}{3} - \frac{1}{2}}[/tex] is equivalent to [tex]y^{ \frac{3}{2}}[/tex]

Answer:

C- 1/y

Step-by-step explanation:

go it right on edge

ACCESS MORE