Respuesta :
Answer:
[tex]y^{ \frac{3}{2}}[/tex]
Step-by-step explanation:
From the question posted, you've already initiated the solution but you applied a wrong approach;
Given
[tex]y^{\frac{4}{3}} . y^{\frac{2}{3} - \frac{1}{2}}[/tex]
Required
Simplify; using power property
Power property states that;
[tex]a^m.a^n = a^{m+n}[/tex]
[tex]a^m/a^n = a^{m-n}[/tex]
By comparison; we have to apply the first property;
This is shown below;
[tex]y^{\frac{4}{3}+\frac{2}{3} - \frac{1}{2}}[/tex]
Add fraction of the same numerator
[tex]y^{\frac{4+2}{3} - \frac{1}{2}}[/tex]
[tex]y^{\frac{6}{3} - \frac{1}{2}}[/tex]
[tex]y^{2 - \frac{1}{2}}[/tex]
Subtract fraction
[tex]y^{ \frac{4-1}{2}}[/tex]
[tex]y^{ \frac{3}{2}}[/tex]
The expression [tex]y^{\frac{4}{3}} . y^{\frac{2}{3} - \frac{1}{2}}[/tex] is equivalent to [tex]y^{ \frac{3}{2}}[/tex]
Answer:
C- 1/y
Step-by-step explanation:
go it right on edge