Answer:
☂ [tex] \underline{ \underline{ \large{ \tt{For \: Question \: Number \: 1}} }}: [/tex]
- [tex] \large{ \tt{ \angle \: DAC = \angle ACB = 50 \degree }}[/tex] { Since AD [tex] \parallel[/tex] BC & Being alternate angle }
♨ [tex] \large{ \tt{ In \: \triangle \: ABC : }}[/tex]
[tex] \large{ \tt{ \angle \: CAB+ \angle \: ABC + \angle \: ACB = 180 \degree}}[/tex] { Sum of angles of a triangle }
⇾ [tex] \large \tt \: \angle \: CAB + 115 \degree + 50 \degree = 180 \degree[/tex]
⇾ [tex] \large{ \tt{ m \: \angle2 = 180 \degree - 165 \degree}}[/tex]
⇾ [tex] \large{ \boxed{ \tt{ m \angle \: 2 = 15 \degree}}}[/tex]
☂ [tex] \underline{ \underline{ \large{ \tt{For \: Question \:Number \: 2}}}}: [/tex]
♨ [tex] \large{ \tt{3x = 12}}[/tex] { Since the diagonals of parallelogram bisect each other }
⟶ [tex] \large{ \tt{x = \frac{12}{3}}} [/tex]
⟶ [tex] \large{ \boxed{ \tt{x = 4}}}[/tex]
Q. Can we set up an equation 2x = 8 in question number 2 ?
Ans : Yep! Since the diagonals of parallelogram bisect each other , you can :) When we solve 2x = 8 , we obviously get x = 4.
Hope I helped! ♡
Have a wonderful day / night ! ツ
[tex] \underbrace{ \overbrace{ \mathfrak{Carry \: On \: Learning}}}[/tex] !
▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁