A wheel rotates about a fixed axis with an initial angular velocity of 20 rad/s. During a 5.0-s interval the angular velocity increases to 40 rad/s. Assume that the angular acceleration was constant during the 5.0-s interval. How many revolutions does the wheel turn through during the 5.0-s interval ( in revelations)? Hint: You need to use one of the equations of constant angular acceleration that independent of angular acceleration.

Respuesta :

Answer:

The appropriate solution is "23.87 rev".

Explanation:

The given values are:

Initial angular velocity,

[tex]\omega_i=20 \ rad/s[/tex]

Final angular velocity,

[tex]\omega_f=40 \ rad/s[/tex]

Time taken,

[tex]t = 5.0 \ s[/tex]

If, α be the angular acceleration, then

⇒  [tex]\omega_f=\omega_i+\alpha t[/tex]

or,

⇒  [tex]\alpha t=\omega_f-\omega_i[/tex]

⇒  [tex]\alpha=\frac{\omega_f-\omega_i}{t}[/tex]

On substituting the values, we get

⇒     [tex]=\frac{40-20}{5.0}[/tex]

⇒     [tex]=\frac{20}{5.0}[/tex]

⇒     [tex]=4 \ rad/s^2[/tex]

If, ΔФ be the angular displacement, then

⇒  [tex]\Delta \theta=\omega_i t+\frac{1}{2} \alpha t^2[/tex]

On substituting the values, we get

⇒        [tex]=[(20\times 5.0)+(\frac{1}{2})\times 4\times (5.0)^2][/tex]

⇒        [tex]=100+50[/tex]

⇒        [tex]=150[/tex]

On converting it into "rev", we get

⇒  [tex]\Delta \theta=(\frac{150}{2 \pi} )[/tex]

⇒        [tex]=23.87 \ rev[/tex]

RELAXING NOICE
Relax