Answer: 54.8 Liters of hydrogen gas can be made at 300 K and 0.970 atm
Explanation:
To calculate the moles, we use the equation:
[tex]\text{Number of moles}=\frac{\text{Given mass}}{\text {Molar mass}}[/tex]
[tex]\text {moles of magnesium }=\frac{52.0g}{24g/mol}=2.16moles[/tex]
The balanced chemical equation is:
[tex]Mg+2HCl\rightarrow MgCl_2+H_2[/tex]
According to stoichiometry:
1 mole of Mg gives = 1 mole of [tex]H_2[/tex]
Thus 2.16 moles of Mg give = [tex]\frac{1}{1}\times 21.6=2.16 moles[/tex] of [tex]H_2[/tex]
According to ideal gas equation:
[tex]PV=nRT[/tex]
P = pressure of gas = 0.970 atm
V = Volume of gas = ?
n = number of moles = 2.16
R = gas constant =[tex]0.0821Latm/Kmol[/tex]
T =temperature =[tex]300K[/tex]
[tex]V=\frac{nRT}{P}[/tex]
[tex]V=\frac{2.16mol\times 0.0821Latm/Kmol\times 300K}{0.970atm}=54.8L[/tex]
Thus 54.8 Liters of hydrogen gas can be made at 300 K and 0.970 atm