Respuesta :

Answer:  54.8 Liters of hydrogen gas can be made at 300 K and 0.970 atm

Explanation:

To calculate the moles, we use the equation:

[tex]\text{Number of moles}=\frac{\text{Given mass}}{\text {Molar mass}}[/tex]

[tex]\text {moles of magnesium }=\frac{52.0g}{24g/mol}=2.16moles[/tex]

The balanced chemical equation is:

[tex]Mg+2HCl\rightarrow MgCl_2+H_2[/tex]

According to stoichiometry:

1 mole of Mg gives = 1 mole of [tex]H_2[/tex]

Thus 2.16 moles of Mg give = [tex]\frac{1}{1}\times 21.6=2.16 moles[/tex] of [tex]H_2[/tex]

According to ideal gas equation:

[tex]PV=nRT[/tex]

P = pressure of gas = 0.970 atm

V = Volume of gas = ?

n = number of moles = 2.16

R = gas constant =[tex]0.0821Latm/Kmol[/tex]

T =temperature =[tex]300K[/tex]

[tex]V=\frac{nRT}{P}[/tex]

[tex]V=\frac{2.16mol\times 0.0821Latm/Kmol\times 300K}{0.970atm}=54.8L[/tex]

Thus 54.8 Liters of hydrogen gas can be made at 300 K and 0.970 atm

ACCESS MORE