Answer:
Explanation:
Given that:
The cell potential on mars E = + 100 mV
By using Goldman's equation:
[tex]E_m = \dfrac{RT}{zF}In \Big (\dfrac{P_K[K^+]_{out}+P_{Na}[Na^+]_{out}+P_{Cl}[Cl^-]_{out} }{P_K[K^+]_{in}+P_{Na}[Na^+]_{in}+ P_{Cl}[Cl^-]_{in}} \Big )[/tex]
Let's take a look at the impermeable cell with respect to two species;
and the two species be Na⁺ and Cl⁻
[tex]E_m = \dfrac{RT}{zF} In \dfrac{[K^+]_{out}}{[K^+]_{in}}[/tex]
where;
z = ionic charge on the species = + 1
∴
[tex]100 \times 10^{-3} = \Big (\dfrac{8.314 \times 298}{1\times 96485} \Big) \mathtt{In} \Big ( \dfrac{4}{[K^+]_{in}} \Big)[/tex]
[tex]100 \times 10^{-3} = 0.0257 \Big ( \dfrac{4}{[K^+]_{in}} \Big)[/tex]
[tex]3.981= \mathtt{In} \Big ( \dfrac{4}{[K^+]_{in}} \Big)[/tex]
[tex]exp ( 3.981) = \dfrac{4}{[K^+]_{in}} \\ \\ 53.57 = \dfrac{4}{[K^+]_{in}}[/tex]
[tex][K^+]_{in} = \dfrac{4}{53.57}[/tex]
[tex][K^+]_{in} = 0.0476[/tex]
For [Na⁺]:
[tex]100 \times 10^{-3} = 0.0257 \Big ( \dfrac{145}{[Na^+]_{in}} \Big)[/tex]
[tex]53.57= \Big ( \dfrac{145}{[Na^+]_{in}} \Big)[/tex]
[tex][Na^+]_{in}= 2.70[/tex]
For [Cl⁻]:
[tex]100 \times 10^{-3} = -0.0257 \ \mathtt{In} \Big ( \dfrac{120}{[Cl^-]_{in}} \Big)[/tex]
[tex]-3.981 = \ \mathtt{In} \Big ( \dfrac{120}{[Cl^-]_{in}} \Big)[/tex]
[tex]0.01867 = \dfrac{120}{[Cl^-]_{in}}[/tex]
[tex][Cl^-]_{in} = \dfrac{120}{0.01867}[/tex]
[tex][Cl^-]_{in} =6427.4[/tex]