Respuesta :

Answer:

[tex]BA = 6.0[/tex]

[tex]BC = 13.4[/tex]

Step-by-step explanation:

Given

The attached triangle

Solving (a) BA

Considering the tangent of angle C, we have:

[tex]tan\ C = \frac{BA}{AC}\\[/tex]

This gives:

[tex]tan\ 25 = \frac{BA}{12}[/tex]

Make BA the subject

[tex]BA = 12 * tan\ 25[/tex]

[tex]BA = 12 * 0.4663[/tex]

[tex]BA = 6.0[/tex] --- approximated

Solving (a) BC

Using Pythagoras theorem

[tex]BC^2 = BA^2 + AC^2[/tex]

[tex]BC^2 = 6.0^2 + 12^2[/tex]

[tex]BC^2 = 180[/tex]

Square root of both sides

[tex]BC = \sqrt{180[/tex]

[tex]BC = 13.4[/tex]