Answer: The equilibrium constant, [tex]K_c[/tex], for the reaction is 0.061.
Explanation:
Initial concentration of [tex]PCl_5[/tex] = [tex]\frac{\text {given mass}}{\text {Molar mass}\times Volume in L}}=\frac{12.3g}{208.2g/mol\times 1.50L}=0.039M[/tex]
Equilibrium concentration of [tex]PCl_5[/tex] = [tex]\frac{31.8}{100}\times 0.039=0.012M[/tex]
The given balanced equilibrium reaction is,
[tex]PCl_5(g)\rightleftharpoons PCl_3(g)+Cl_2(g)[/tex]
Initial conc. 0.039 M 0 M 0 M
At eqm. conc. (0.039-x) M (x) M (x) M
Given : (0.039-x) = 0.012
x = 0.027
The expression for equilibrium constant for this reaction will be,
[tex]K_c=\frac{[Cl_2]\times [PCl_3]}{[PCl_5]}[/tex]
Now put all the given values in this expression, we get :
[tex]K_c=\frac{0.027\times 0.027}{0.012}=0.061[/tex]
The equilibrium constant, [tex]K_c[/tex], for the reaction is 0.061.