Respuesta :

take 2/7 and multiply it by both expressions in the parentheses 

2/7(2s) + 2/7(3) 

4/7s + 6/7

(note this is the answer assuming that there is supposed to be a plus sign in between 2s and 3 (2s + 3) )

Answer:

[tex]\frac{4}{7}s+ \frac{6}{7}[/tex]

Step-by-step explanation:

The distributive property says that:

[tex]a \cdot (b+c) = a\cdot b+ a\cdot c[/tex]

Given the expression:

[tex]\frac{2}{7}(2s+3)[/tex]

Apply the distributive property:

[tex]\frac{2}{7} \cdot (2s) +\frac{2}{7} \cdot (3)[/tex]

Simplify:

[tex]\frac{4}{7}s+ \frac{6}{7}[/tex]

Therefore, the expanded form of the given expression is, [tex]\frac{4}{7}s+ \frac{6}{7}[/tex]