Answer:
52.33%
Step-by-step explanation:
Since, all six sides of the box are touching the ball.
So, all the three dimensions of the box are equal.
Hence, it is a cubical box.
Side length of the box (l)
= diameter of the ball
= 2*radius of the ball
= 2*5
= 10 In.
[tex] V_{ball} = \frac{4}{3} \pi r^3 [/tex]
[tex] V_{ball} = \frac{4}{3} \times 3.14(5)^3 [/tex]
[tex] V_{ball} = \frac{4}{3} \times 3.14\times 125 [/tex]
[tex] V_{ball} = \frac{1,570}{3}\: In^3 [/tex]
[tex] V_{box} =l^3 [/tex]
[tex] V_{box} =(10)^3 [/tex]
[tex] V_{box} =1000\: In^3 [/tex]
Percentage of the space in the box occupied by the ball
[tex] = \frac{V_{ball}}{V_{box} } \times 100 [/tex]
[tex] = \frac{\frac{1,570}{3}}{1000} \times 100 [/tex]
[tex] = \frac{1570}{3000} \times 100 [/tex]
[tex] = \frac{157}{3} [/tex]
[tex] = 52.33\% [/tex]