Answer:
The energy of the photon is [tex]2.311\times 10^{-20}\ J[/tex].
Explanation:
Given:
The wavelength of the photon is given as:
[tex]\lambda =8.6\times 10^3\ nm\\1\ nm = 10^{-9}\ m\\\therefore \lambda = 8.6\times 10^{3}\times 10^{-9}=8.6\times 10^{-6}\ m[/tex]
The energy of a photon in terms of its wavelength is given as:
[tex]E_p=\frac{hc}{\lambda}\\Where,\ h\rightarrow \textrm{Planck's constant}=6.626\times 10^{-34}\ Js\\c\rightarrow \textrm{velocity of light}=3\times 10^8\ m/s[/tex]
Plug in all the given values and calculate energy of the photon, [tex]E_p[/tex]. This gives,
[tex]E_p=\frac{6.626\times 10^{-34} \times 3\times 10^8}{8.6\times 10^{-6}}\\E_p=\frac{19.878\times 10^{-26}}{8.6\times 10^{-6}}\\E_p=2.311\times 10^{-20}\ J[/tex]
Therefore, the energy of the photon is [tex]2.311\times 10^{-20}\ J[/tex].